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Abstract

 

Thanks to inexpensive microprocessors, consumer electronics are getting more power-
ful. They offer us greater control over our environment, but in a sense they are getting 
too powerful for their own good. A programmable thermostat can make my home more 
comfortable 

 

and

 

 save energy, but only if I successfully program it to match my life-style. 
Graphical, direct manipulation user interfaces are step in the direction of making devices 
easier to program, but it is still easier to manipulate physical objects in the real world 
than it is to interact with virtual objects “inside” a computer display. Tangible, or grasp-
able user interfaces help bridge the gap between the virtual world and the physical 
world by allowing us to manipulate digital information directly with our hands. Tangi-
ble Programming Bricks are physical building blocks for constructing simple programs. 
In this thesis I provide technical details of the Bricks themselves, demonstrate that they 
are useful for controlling a variety of digital “everyday objects,” from toy cars to kitchen 
appliances, and set the stage for future research that will more rigorously support my 
hypothesis that tangible programming is easier to understand, remember, explain to oth-
ers, and perform in social settings, when compared to traditional programming mecha-
nisms.

Thesis Advisor: Fred Martin, Research Scientist
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Chapter 1 — Introduction

 

I began to see how children who had learned to program computers could
use very concrete computer models to think about thinking and to learn
about learning and in doing so, enhance their power as psychologists and
as epistemologists. For example, many children are held back in their
learning because they have a model of learning in which you have either
“got it” or “got it wrong.” But when you learn to program a computer you
almost never get it right the first time. Learning to be a master program-
mer is learning to become highly skilled at isolating and correcting
“bugs,” the parts that keep the program from working. The question to ask
about the program is not whether it is right or wrong, but if it is fixable. If
this way of looking at intellectual products were generalized to how the
larger culture thinks about knowledge acquisition, we all might be less in-
timidated by our fears of “being wrong.” This potential influence of the
computer on changing our notion of a black and white version of our suc-
cesses and failures is an example of using the computer as an “object-to-
think-with.” [38, p.23]

Seymour Papert, 

 

Mindstorms

 

1.1 The promise of programming “for the rest of us”

 

If a machine is to serve one very specialized role, such as providing mechanical 
power, it ought to be hidden and of no concern. But if the purpose of the machine is 
flexibility and personal adaptibility, we had better figure out how to give users maxi-
mum control. Expressive power and nuance are incompatible with invisibility and 

inaccessibility. [9]

Graphical User Interfaces (GUIs) designed for programming are still in their infancy, so

most professional programmers use text-based programming languages and editing

tools for their work. For the novice programmer, text-based languages can be daunting,

fortunately visual programming languages “for the rest of us” have enjoyed some suc-

cess.

 

1

 

 The premise of this thesis is that constructing and modifying programs using even

the most modern GUIs is an unnecessary obstacle to programming. We can do better.

 

1. In some ways, “visual” is a misnomer, especially given that, when Microsoft says “visual” they 
really mean 

 

textual

 

 augmented with a direct manipulation GUI builder. Perhaps “graphical” is a 
better term.
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When experts in human-computer interaction (HCI) say “direct manipulation” what

they really mean is 

 

indirect

 

 manipulation using a mouse and keyboard to control “cur-

sors” which act as our proxies. To the rescue comes the emerging field of 

 

tangible user

interfaces

 

 where virtual objects inside computers are represented by physical “manipula-

tives” in the real world. To the lay person, the most elusive of virtual objects are pro-

grams themselves, the invisible building blocks that makes all computers function. It is

my goal to de-mystify the art of programming by making programs as tangible as a stack

of L

 

EGO

 

 bricks.

 

1.1.1 Programming is not just for professionals

 

Programming in the broad sense is no longer a task relegated solely to professional pro-

grammers. Accountants use electronic spreadsheets to build business models. Musicians

program their MIDI synthesizers to accompany them in performance. And a host of con-

sumer electronics demand rudimentary programming skills from the general public:

VCRs, microwave ovens, bread makers, thermostats, and cameras, just to name a few. It

is in these consumer products that existing user interface technology shows its greatest

weaknesses. VCRplus

 



 

 was successfully introduced in the U.S.

 

1

 

 after studies showed

that even intelligent, well-educated people found it frustrating to program their VCR to

record their favorite TV shows, preferring instead to type a single multi-digit number

listed in their newspaper that encodes the program’s time, duration, day of the week,

and channel. But this approach gets the job done at the expense of taking creative control

 

away

 

 from the consumer. “One touch cooking” might do a great job at baking a potato,

but what about creating my own recipes? 

 

1. G-code in Japan.



 

11

 

1.1.2 Kids as programmers

 

When computers were first introduced into schools, what we now call “computer liter-

acy” often meant learning how to program “turtles” using the Logo programming lan-

guage [38]. Nowadays, learning computer literacy is more likely to mean learning to use

canned programs like word processors, paint programs, and educational computer

games. Less and less computer science is taught to school children.

 

1

 

 My goal is to reverse

this trend by making programming a hands-on activity and by making it enjoyable to lit-

 

1. Though I am delighted to see that Brian Harvey’s 

 

Computer Science Logo Style

 

 [19] is back in print.

Inventors Workshop at San Jose Tech Museum
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erally “toy around with” fundamental concepts of computer science in a playful envi-

ronment.

Fortunately, today we can still find children programming in Logo. In addition to

instructing virtual turtles to draw geometric shapes on a computer screen, kids can pro-

gram whole colonies of virtual termites [44], give behavior to toy robots, and build sci-

ence experiments. These programs, written by children using, for example the L

 

EGO

 

Control Lab, do not take anywhere near full advantage of the potential of the computer,

and, like the early days of Logo, these projects require supervision and guidance from

teachers and mentors. Logo’s syntax is partly to blame, but it is my claim that the main

problem is that the mechanics of building, fixing, and downloading programs are neces-

sarily complicated by even the best screen-based software construction tools. In this the-

sis I tackle this problem in particular, and hope to inspire researchers to go one step

further by developing programmable toys which encourage children to modularize,

abstract, and reuse the software components they build.

 

1.1.3 User interfaces of digital “everyday objects”

 

The comprehensibility of user interfaces in household appliances and handheld elec-

tronic devices took a dramatic nose dive with the introduction of inexpensive microcon-

trollers. Where once there was a natural, often a one-to-one mapping between the

appliance’s functions and the controls on the front panel, the embedded microprocessor

allowed designers to decouple the functions from the controls, and even worse, allowed

them to have fewer controls than functions. The epitome of this trend is the multi- func-

tion digital watch.

 

1

 

 Although it might only have two or three push-buttons, it will boast

a dual time-zone clock, calendar, timer, stop watch, alarm clock, and even an address

book. Well, you might say, criticizing user interfaces with small displays and limited

controls is like shooting fish in a barrel. At the other extreme is the home entertainment

system remote control and restaurant cash registers where there are many functions and

equally many buttons, yet the interface is still daunting. Even general-purpose comput-

ers with modern graphical user interfaces (GUIs) can be difficult to learn. Watching nov-

 

1. Arguably the first “wearable computer.”
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ice computer users learn to use even “user-friendly” software, one quickly notices that

the mechanics of operating so-called “direct manipulation” user interfaces dominate the

learning task. This is especially true for our parents’ and grandparents’ generation.

Even when the mechanics of GUIs are mastered, they frequently require so much atten-

tion from the user that they can’t be used in social situations without the user appearing

rude. This is particularly evident when manual dexterity is required for selecting and

manipulating graphical objects, when (having nothing to do with GUIs) the interface is

error prone, for example speech and handwriting recognition, and when the interface

introduces long or unpredictable delays. 

 

1.1.4 Information appliances

 

In his book 

 

The Invisible Computer

 

 Don Norman makes the case that general-purpose

“personal computers” are becoming too complicated, and that special-purpose “infor-

mation appliances” will in the end do a better job at certain tasks. But personal comput-

ers you have certain practical advantages, for example it is easier for several applications

to share information when it is all on the same machine, and certain economic advan-

tages, notably that, no matter how many software applications I buy for my laptop com-

puter, I only have to buy the state-of-the-art color LCD display once. This is noticeable

savings considering it is the single most expensive component in the device. The most

successful information appliance to date is 3Com’s Palm line of personal organizers. To

keep costs down and to keep the unit compact, the display on a Palm Pilot is a small, low

resolution, black and white display that can only display of few “objects” at a time. This

limitation can be truly crippling when the user needs to manipulate even moderate vol-

umes of information. My answer to this problem is to rely less on display technology by

letting people see and manipulate information as physical objects.

 

1.2 Overview

 

The Tangible Programming Brick is a general-purpose research tool based on the Cricket

architecture that can be repeatedly programmed using the Cricket Logo software devel-

opment environment. It features an innovative connector system that is both electrically
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reliable and easy to assemble and disassemble by hand, three colored LEDs for user

feedback, a capacitive touch sensor for user input, and a card slot which accepts a variety

of peripheral devices including an I

 

2

 

C EEPROM parameter card, an infrared communi-

cation card, an alphanumeric display, and a growing number of sensors and actuators

designed for the Cricket bus system.

To the end user, the Tangible Programming Brick offers two “affordances” for construct-

ing programs, (1) inserting parameter cards, and (2) stacking a Brick above or below

other Bricks.

Based on these two basic interaction techniques, I implemented three simple program-

ming languages using a set of Tangible Programming Bricks, one language to control toy

cars, one language to control toy trains, and one language to control microwave ovens.

Inserting a parameter card
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.

 

1.3 Organization of this document

 

This thesis is divided into five chapters. Chapter 1 has presented a set of problems that

have motivated my research. Chapter 2 gives the context for my research: an introduc-

tion to tangible programming, previous work, including a comparison with other pro-

gramming environments, and gives an overview of devices I have built that led up to

development of the Tangible Programming Bricks. It discusses what kind of programs

people can build with my system, and it discusses language issues and syntax. Chapter 3

provides details of the design of the blocks themselves, and concludes with a design cri-

tique. Chapter 4 offers a discussion of issue that are relevant to my research. Chapter 5

presents directions for future research and my conclusions. Appendix A contains sche-

matics and technical drawings of the Tangible Programming Brick. Appendix B details

the application software used in the microwave oven demonstration and my modifica-

tions to the Cricket Logo firmware.

Stacking Bricks together
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Chapter 2 — Motivation and Context

 

The first lesson that any technologist bringing computers into a classroom
gets taught by the kids is that they don’t want to sit still in front of a tube.
They want to play, in groups and alone, wherever their fancy takes them.
The computer has to tag along if it is to participate. This is why Mitch
Resnick, who has carried on Seymour’s tradition at the Media Lab, has
worked so hard to squeeze a computer into a 

 

L

 

EGO Brick. These bring the
malleability of computing to the interactivity of a 

 

L

 

EGO set. [14, p. 146]

A child has a wealth of knowledge about how the world works that pro-
vides the common sense so noticeably absent in computers. Similarly, Sey-
mour Papert feels that the use of computers for education has gotten stuck.
We learn by manipulating, not observing. It’s only when things around us
can teach us, that learning can be woven into everyday experience. He’s
not looking to duplicate the mind of a good teacher; he just wants a tennis
ball that knows how it has been hit so that it can give you feedback. [14, p.
201] 

Neil Gershenfeld, 

 

When Things Start to Think

 

2.1 Scope: What is programming?

 

For purposes of this thesis I define programming very broadly. It ranges from the com-

plex to the simple and everyday. Computer programs written by software engineers can

take years to write in span thousands of pages. Programs written by kids are typically

less than a page, and even a few lines of code can produce very interesting behaviors. It

is programs of this scale that this thesis focuses upon. I make no claims that my tech-

niques are ready to compete with, for example, Metrowerks CodeWarrior, but I do not

consider this a serious shortcoming, as even simple programs can be profoundly

empowering to children and adults alike.

To consumers, the term “programming” often means something more basic like getting

the VCR to record their favorite TV show on Thursday night. Sometimes programming

really means configuring, tailoring, or personalizing. These activities often have little to

do with time or sequential actions. For example, in most television broadcasts areas there

are unused channels. Modern television sets allow the owner to identify these unused

channels so that pressing the channel up button skips to the next active channel. This is

an example of an activity which is only done once every few years, so it is typically per-
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formed with manual in hand, if at all. Another such example is programming a modern

thermostat to set a different temperature at night, during the day, and on weekends,

according to the life-style of the inhabitants. Other kinds of consumer programming are

technically feasible but rarely done. On some bread makers it is possible to set the start

time and fine tune temperatures and times to suit a particular bread recipe, but most

people, finding this too cumbersome, just stick to the basic settings. This is not surprising

considering the number of VCRs that flash 12:00 day in and day out.

Even in the computational world there are “programs” which aren’t quite programs. For

example, accountants do not have to be programmers to build electronic spreadsheets.

This is because a spreadsheet describes functional (i.e. “what is”) relationships between

cells in the familiar grid, leaving the procedural (i.e. “how to” compute) aspects to the

computer. Similarly, database searches are expressed using a query language (e.g. SQL

 

1

 

)

that allows users to specify well-defined operations and filtering on vast quantities of

data without any mention of what order the operations are to be performed.

 

2.2 What is tangible programming?

 

The term “tangible programming language” was coined by Suzuki and Kato to describe

their AlgoBlock collaborative programming environment for children. The unique fea-

ture that sets AlgoBlock apart from other programming environments is the graspable

nature of its user interface. Instead of manipulating 

 

virtual

 

 objects displayed on a com-

puter screen, users of AlgoBlock arranged 

 

physical blocks

 

 on a table to communicate to the

computer. “Tangible programming” refers to the activity of arranging the blocks to build

(as opposed to “write”) computer programs.

 

2.3 Why tangible programming?

 

There are a number of reasons why one might want to program by manipulating physi-

cal objects. Some people, adults and children alike, learn more readily when their bodies

are involved in the learning process. Some kinesthetic thinkers, as they are sometimes

 

1. SQL = Structured Query Language (pronounced “sequel”)
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called, go on to become star athletes and virtuoso pianists, but are less successful at

learning activities that aren’t at all physical. My primary motivation is to make program-

ming an activity that is accessible to the hands and minds of younger children by mak-

ing it more direct and less abstract. Tangible programming may have an appeal even to

experienced abstract thinkers. Graduate students have suggested that they long for the

day when they can quickly prototype software as easily as they now “breadboard” elec-

tronic circuits.

 

2.3.1 Collaborative Programming

 

One of my original motivations for pursuing tangible programming is to design a pro-

gramming environment where a small group students can build programs together. Like

Suzuki and Kato [54, 55], I am interested in programming environments which encour-

age collaboration. This is difficult using traditional screen-based programming environ-

ments because only one user can type on the keyboard at a time. When a program is

constructed out of physical objects, several people sitting around a table can work

together to assemble or modify the program as a team or each person can build or mod-

ify their own methods independently of their teammates.

AlgoBlock collaborative programming system



 

19

 

2.3.2 Gender differences

 

One of the things to which I attribute my success at learning about computers was that I

was interested in them as an end in themselves and less as a tool. In the mid-’70s com-

puters weren’t used casually as tools, they were used as business equipment and scien-

tific equipment. If you were not a scientist or a computer professional, you had very little

opportunity to use a computer as a tool. Kids nowadays primarily use computers as

tools and as games. They can use these interests and activities as stepping stones to an

interests in programming. There are well-documented differences between the sexes in

“kid culture” and “computer culture” [26]. This makes the transition for boys much eas-

ier than transition for girls to become programmers. We hope that, by introducing tangi-

ble programming as an activity performed away from a traditional computer (with

keyboard, mouse, and screen), girls and boys will be equally engaged in this computa-

tional but not “computer” learning activity. There is growing anecdotal evidence that

making programming accessible to younger and younger children, at a time when gen-

der differences are less developed, has the effect of narrowing the “gender gap” in later

grades when the more technical “crafts” traditionally become dominated by boys [35].

 

2.3.3 Debugging

 

The most difficult aspect of learning how to program is learning how to debug your pro-

grams. Debugging is a difficult activity to teach beginners, because the process of debug-

ging is largely a process driven by knowing what to look for and having an extremely

clear model of what is going on inside the computer. Since it is exactly this modeling of

these invisible processes that one is trying to teach when teaching students how to pro-

gram, learning how to program is hard. The threshold for becoming confident is high.

One of my original goals is to make these invisible processes visible by making programs

something that you can watch as it runs, thereby making debugging a skill with a shal-

lower learning curve.

 

2.3.4 Limitations of “visual” programming languages

 

Screen-based graphical programming languages suffer from a number of limitations:

Tools for manipulating textual programming languages are much more mature than
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graphical programming tools. Textual programming languages make better use of screen

real estate then graphical programming languages, which often include extra decora-

tions around each functional block.

 

1

 

 In general, the primitive state of metaphors and

tools for a manipulating complexity in programs constructed using visual programming

languages result in visual programming languages being difficult to express and manage

complex software systems. In the domain of programming languages for children, this is

less of an issue because novice programmers need to gain experience writing simple pro-

grams before they tackle larger, more complex programs.

A common approach for evaluating and comparing visual languages is to quantify how

elegantly and concisely a particular algorithm can be implemented (e.g. generate

sequence of prime numbers) [18]. I believe that this is too narrow a measure of program-

ming languages, and one which is driven by the notion that programs are not part of the

everyday world around us.

 

2.4 Related Work

 

My work sits squarely between visual programming languages [17, 40, 51], direct manip-

ulation [50], tangible interfaces [16, 23, 54, 55, 58, 61], and “end-user” programming [52].

I focus my attention specifically on children as programmers. A number of programming

systems have been designed for children: Logo [2, 38], ObjectLogo [10], the TORTIS But-

ton Box and Slot Machine [40], ToonTalk [25], Cocoa (a.k.a. KidSim) [51], Agentsheets

[15, 42], and AlgoBlock [54, 55], just to name a few. My work follows previous research

done at the Epistemology and Learning group at the MIT Media Lab, where researchers

have developed a number of computational toys [31, 45, 46] designed with education in

mind. Professors Mitchel Resnick (MIT), Robbie Berg (Wellesley College), and Mike

Eisenberg (University of Colorado), have developed a methodology and research

agenda called “Beyond Black Boxes” designed to encourage kids to explore science by

building their own scientific apparatus [47]. My research was influenced in intangible

ways by this project.

 

1. This is closely related to a phenomenon that Tufte calls “chart junk” (a typical edition of USA Today 
contains a number of graphs with examples of “chart junk”)
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My work has been particularly inspired by fundamental principles of human-centered

design espoused by Don Norman [36], who hopes that, one day, computers will be so

embedded in everyday objects as to be rendered invisible [37], by graphic designer and

visual thinker, Edward Tufte [56], and lastly, but not least, by the work of Guy Steele, Hal

Abelson, and Gerry Sussman, who developed not only a powerful, expressive program-

ming language, Scheme [53], but more importantly, a way of thinking about computa-

tion which allows programmers to capture how they 

 

think

 

 about a problem, not merely

how to solve it [1].

 

2.4.1 Tangible User Interfaces

 

Ullmer and Ishii define tangible user interfaces as “user interfaces employing physical

objects, surfaces, and spaces as representations and controls for computationally medi-

ated associations.” [59] They refer to these physical objects as “tangibles.” My system,

like many tangible user interfaces, is composed of a collection of tangibles. In the concep-

tual framework of Fitzmaurice, Buxton, and Ishii, my system is a “graspable user inter-

face.” [12]

Unlike systems where absolute position and orientation of objects in space control the

interaction (e.g. Illuminating Light [61]) my system uses sequence and juxtaposition (e.g.

mediaBlocks [58]), and constructive assembly to convey meaning, configuration, and

topology (e.g. Geometry-defining processors [3], Triangles [16], and MERL Blocks [4]). 

Most closely related to my research is a work by Suzuki and Kato. They implemented

their AlgoBlock system to study collaborative learning of programming concepts among

children, and in [54] they coined the term “tangible programming language.” In their

system, each hand-sized block is roughly equivalent to one Logo statement, for example

“go forward,” and “turn right.” The tangible program assembled by the children

directed an on-screen submarine around an obstacle course.

 

2.4.2 Direct Manipulation User Interfaces

 

Schneiderman writes in [50] among others, about “direct manipulation user interfaces,”

and espouses their virtues over traditional command line interfaces, programming lan-
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guages, and agents [29]. Direct manipulation user interfaces are almost singularly

responsible for making computers usable by a wide range of users from trained profes-

sionals to small children, by endowing “objects” on the screen with a quality of manipu-

lability that approaches real world objects. When screen-based objects (the “nouns”) are

distinct and well separated, and the number of actions that can be applied to them (the

“verbs”) is small, direct manipulation user interfaces work admirably well. But when

screen based objects are small, numerous, or overlapping, the palette of actions is large,

notions of “selection” and “operating mode” begin to cloud the picture, or there is little

tolerance for error, for example in real-time music applications, direct manipulation user

interfaces can be, at best cumbersome and frustrating. The main problem with direct

manipulation user interfaces in the context of graphical interfaces is that they’re not

really direct. The “objects” are separated from the user by a pane of glass, and the only

way to manipulate them is through a proxy (the “cursor”) controlled via the mouse or

other pointing device. The arrangement is reminiscent of teleoperated manipulators

used to safely handle radioactive materials. Compared to ungloved hands, dexterity is

reduced and, without extreme care, errors become more common. By contrast, tangible

user interfaces can take advantage of the full dexterity of two hands unencumbered by

go-betweens. 

 

2.4.3 Visual Programming Languages

 

My work is related to the field of visual programming languages,

 

1

 

 which strives to

reduce the barrier to entry of programming for “end users” (i.e. not professional pro-

grammers) [52]. Most commercial visual programming languages (e.g. IRCAM/Opcode

 

1. Microsoft Visual Basic and Visual C++, although very popular, are not truly visual programming 
languages. They are software development environments that combine traditional textual program-
ming languages with a direct manipulation, graphical, user interface builder.
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MAX, National Instruments LabVIEW [24], and Cassidy and Greene Spreadsheet 2000)

to use a “box and wire” paradigm, reminiscent of flowcharts, to indicate function and

data flow. I deliberately chose not to use physical wires to avoid physical tangles.

 

2.4.4 Logo and its descendants

 

Ever since and Papert’s seminal work on the Logo programming language [38], much

work has been done on programming environments for children. A number of descen-

dants of Logo exists including StarLogo [44], which introduces parallelism as a way of

allowing children to explore aggregate and emergent behavior by programming “flocks”

of “turtles” with simple rules, and ObjectLogo [10], which introduces object-oriented

programming without the usual complexity of instances and classes.

 

2.4.5 TORTIS button box and slot machine

 

In 1976, Radia Perlman and Danny Hillis [40] built the TORTIS button box and slot

machine to explore how non-traditional interface techniques might be used to teach pre-

school children about programming by avoiding the cumbersome mechanics of typing

in Logo programs. The button box presented to the user an array of large buttons that

IRCAM Max DSP example: A sine wave generator
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could be used to directly control the actions of a “turtle” (a small, bubble shaped, robotic

vehicle tethered to the computer). The the basic button box provided only simple com-

mands like forward, back, right, left, and beep, which could be repeated several times for

greater effect (e.g. turn further to the right). Experiments were conducted with an auxil-

iary button box which provided numeric parameter buttons 1 through 10. In addition to

controlling the turtle’s actions, a transcript was displayed on the screen and made avail-

able for further manipulation. 

The slot machine was possibly the first tangible programming language. It consisted of

four color-coded racks of slots in which cards could be inserted, side-by-side. Each card

represented a command with a fixed parameter (e.g. forward 10). Other racks (a.k.a. pro-

cedures) could be invoked (“called”) with a colored card. As the program was executed

in sequence, lights under each slot would indicate which card was being performed.

 

2.4.6 Logo Blocks

 

Logo Blocks [5, 49] is a visual programming language directly based on Logo. Its struc-

ture is much more two-dimensional in nature, and also provides procedures and proce-

dure calls. The visual aesthetic of Logo Blocks is reminiscent of a colorful jigsaw puzzle.

One limitation of Logo Blocks that is also an issue for tangible programming is the fixed

size of the blocks, which sometimes makes it cumbersome to assemble certain legitimate

programs without introducing “padding” blocks. In Logo Blocks this could be solved by
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making certain blocks stretchable. In the tangible world this tension between physical

structure and semantic structure is an ongoing challenge. 

 

2.4.7 L

 

EGO

 

 Mindstorms

 

L

 

EGO

 

’s “RCX Code” visual programming language was introduced with the Mind-

storms product debut in 1998. It was inspired, in part, by an early prototype of Logo

Blocks [34]. In the L

 

EGO

 

 tradition, an RCX Code program consists of a collection of one-

dimensional instruction “stacks” made up of brick-like icons. Each “brick” is a complete

program statement, for example

set AC power 1

Logo Blocks example: Motor “wiggles” faster when sensor A gets hotter



 

26

 

The parameters to this statement (AC and 1) are filled in by clicking on the brick. This

expands the brick (like a familiar “dialog box”) revealing the appropriate menus, but-

tons, and text fields. It is worth noting that in the tangible world there are no dialog

boxes, so a statement like this needs to be assembled out of individual parameter blocks. 

RCX Code is suitable only for writing very simple programs. This is partly due to limited

screen real estate, and limited language features. For instance, though there are proce-

dures and procedure calls, there is no procedure parameter passing,

 

1

 

 and there is only a

single variable/counter.

 

2.4.8 Other languages for children

 

Of course, not all languages for children derive from Logo. AgentSheets and Visual

AgenTalk [42, 43] provides a more powerful visual programming language for designing

and sharing screen based simulations in the spirit of SimCity

 



 

. Programs in Visual

AgenTalk are a collection of rules with patterns and consequent actions expressed par-

tially as text and partially as icons. I believe this particular programming style is particu-

larly well-suited for implementation as a tangible programming language. Cocoa (a.k.a.

KidSim) [51] is a visual language inspired by AgentSheets that allows kids build ani-

mated simulations by designing sets of simple, graphical “rewrite rules” to control

 

1. So some people would say these are really “macros.”

An RCX Code Sensor Watcher
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behavior of animals on the screen. Here a rewrite rule is composed of a “before” picture

showing a situation (a pattern to match) and an “after” picture (the rewrite). Smith’s

canonical example shows a child faced with the task of teaching a gorilla to move for-

ward and jump over rocks. The completed program includes patterns and rewrites for

each phase of the jump, in addition to a simple rule for moving forward. Ken Kahn’s

ToonTalk [25] is a very powerful object-oriented, programming-by-example, video-

game-like environment for kids. Kahn has succeeded through carefully chosen meta-

phors and fun animated characters and data structures to make accessible to children a

programming language rich enough for computer scientists.

 

2.4.9 Ubiquitous computing

 

Ubiquitous computing [62] and information appliances [37] promise a world where gen-

eral-purpose computers take a back seat to small devices dedicated to a single task.

Instead of personal computers which critics argue do to many things not very well, and

which are confusing for “non-computer literate” people, advances in this direction

would result in a plethora of everyday objects with computers inside but virtual extinc-

tion of the term “the computer.” Tangible programming fits neatly into this model by

providing convenient and intuitive interfaces to digital appliances without keyboards or

displays.

 

2.5 Hardware History

 

I didn’t develop the Tangible Programming Brick in a vacuum. It descended from a long

line of small, programmable computers developed at MIT by Fred Martin and others.
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2.5.1 Programmable Bricks

 

The MIT Programmable Brick (a.k.a. P-Brick) [32] is a small computer programmable in

Logo. It was designed so children could incorporate cybernetic behavior into their L

 

EGO

 

construction projects [30]. It has an internal battery, sensor inputs, motor control ports,

and a two line LCD display. The P-brick went through a number of design iterations, and

was eventually commercialized by L

 

EGO

 

 as the RCX Brick, which has a simplified pro-

gramming model.

 

2.5.2 The Handy Board

 

In 1989 Fred Martin, Randy Sargent, and P. K. Oberoi created the MIT 6.270 L

 

EGO

 

 robot

design competition and developed the hardware and software for students to design

and program their own robots. The Motorola 6811-based microcontroller used in the

course, after going through a number of design iterations, including the “Mini Board,”

eventually grew to become the popular “Handy Board.” One of the keys to the Handy

Board’s success was the “Interactive C” programming environment which allowed stu-

The Gray Brick, the P-Brick and the LEGO RCX
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dents to quickly develop and debug their robot software. The hardware is very similar to

the Programmable Brick.

 

2.5.3 Crickets and Thinking Tags

 

The Cricket was developed by Fred Martin, Brian Silverman, and Robbie Berg as an out-

growth of the Thinking Tags project, originally developed for the 10th anniversary of the

Media Lab. The Tags, or “affinity badges” are worn like a name tag. They communicate

with other badges via infrared light, much like a TV remote control, and have green and

red LEDs to indicate how much two people have in common (e.g. interests, opinions,

etc.).

Crickets are programmed in a subset of Logo. Logo programs are developed on a per-

sonal computer and downloaded via an infrared link to the Cricket.

The Cricket and the Cricket Logo programming environment provided considerable

leverage as I pursued my research in tangible programming. Cricket users benefit from

being able to program in a high-level language on a desktop computer, downloading

their programs to one or more Crickets, and then interactively debugging the resulting

The “Blue Dot” Cricket
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system by remote control from the desktop computer. I modified the Cricket operating

system and extended the Cricket Logo interpreter to accommodate the design of the

electronics in the Tangible Programming Brick. This allowed programming efforts to

progress very quickly. 

The design and troubleshooting of the electronics in the Tangible Programming Brick

also went very smoothly because my design was based on the proven technology of the

Cricket. In hybrid software-hardware designs, there is frequently a bottleneck in the test-

ing process because the software cannot be finished before the electronics are proto-

typed, and the electronics cannot be tested before working software is available.

 

1

 

 I

addressed this problem by augmenting the electronics of several Crickets to reflect the

modified electronics of the Bricks, and testing software changes on this platform before

the assembled electronics of the Bricks were available. I originally prototyped a capaci-

tive touch sensor based on a design by Rehmi Post [41] as a separate Cricket bus device,

and I was able to transplant the code into the Brick with very few problems. In the end I

only needed to discard three Bricks due to nonworking software.

 

2.5.4 Tiles

 

Inspired by his earlier work with (1D) electronic Beads, Kwin Kramer developed the 2D

Tiles [27] system. Each Tile is a 2

 

1

 

/

 

2

 

” square and contains enough computational power

to run a subset of Java. Kramer’s goal was to demonstrate the power of “mobile code” in

a toy network environment which is constantly being reconfigured. Each Tile communi-

cates optically with its north, south, east, and west neighbors. Programs “jump” from tile

to tile and display their behavior on the same bi-color LEDs used for communication.

The two-dimensional, composable nature of the Tiles got me thinking about building

new learning activities using this sort of technology.

 

1. In this case there was an additional bottleneck because the hardware could not be tested before the 
packaging and final assembly work completed. Because I was using a One Time Programmable 
(OTP) microprocessor, I had to discard any Bricks with intermediate or broken software.
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2.6 Setting the stage

 

2.6.1 The tangible programming challenge

 

Ever since the Tiles project came to fruition, I had been thinking about how to use

devices like the Tiles to physically build programs. The idea was to have tiles, or some-

thing like them but with less computational power, to serve as individual tokens from

which program would be built. I had envisioned that these token tiles would be con-

nected to a “compiler” node which would “parse” the structure of the tiles and use this

structure to produce an executable program. As I got thinking more about snap-together

elements it became more clear that this compilation step was not necessary. The tiles

themselves could execute the program steps in order. This is especially interesting when

the actuators and sensors are attached directly to the relevant Bricks in the program. 

To understand this distributed model, consider a variant of Scrabble

 



 

 where the tiles

light up when words are formed. As children are learning how to spell, this toy would

let them serendipitously discover new words. In the distributed model, rather than hav-

ing a central overseer, each individual Brick or tile can have a dictionary inside it the.

Alternately a tile might simply recognize sub-patterns and communicate with their

neighbors to decide when to light up a section of letters without needing an entire dictio-

nary.

 

2.6.2 Magnetic Programming Kit and microTiles

 

During the summer of 1998, shortly after Kwin Kramer debuted his Tiles project, Vennila

Ramalingam, a Ph.D. student of Professor Mike Eisenberg from the University of Colo-

rado, visited our lab. She was interested in developing a tangible programming meta-

phor based on refrigerator magnets. She dubbed it the “Magnetic Programming Kit”

because it reminded her of the successful Magnetic Poetry Kit. In support of this project,

I designed and prototyped a Cricket-based tile called the Micro-tile. Like Kwin’s Tiles,

the Micro-tile was designed to communicate with its four neighbors using short-range

infrared light. 
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2.6.3 Ladybugs

 

As a project for Professor Hiroshi Ishii’s Tangible Interfaces class, I designed and built

the Ladybug,

 

1 a yet tinier version of the Cricket. It is shaped like a cube measuring about

1 cm on a side. I designed the Ladybug to be a remote “touch transponder”. Using a min-

imalist capacitance sensor designed by Rehmy Post (which employs only a microproces-

sor and a mega-ohm range resistor), the Ladybug was designed to sense a person’s touch

and relay this sensor information, via infrared light, to a central user interface manager.

As a follow-on, I built the Ladybug 2, which fixed problems with the touch sensor,

added a push-button, and provided infrared communication in two (opposing) direc-

tions, much like Kramer’s Beads communicated using inductive coupling [27]. Both

Ladybugs were based on a 3 volt lithium “1/3 N cell” (e.g. 2L76), and an 8-pin

PIC12C672.

1. Many thanks to Chris Hancock for contributing the name.

The Ladybug and the Ladybug2
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2.6.4 Blocks

For additional printed circuit board real estate, I moved to a 2/3 AAA-sized, 6 volt, silver

oxide cell (e.g. 544). This line of Crickets were unceremoniously named Blocks. They had

two capacitive touch sensors, three LEDs in place of motors, and two bus connectors:

one master bus (the regular Cricket bus used to communicate to external sensors and

other peripherals), and one slave bus. The additional bus connection allowed a Block to

act as a “bus device” to another Cricket. This turned out to be a key architectural compo-

nent of the Tangible Programming Bricks, as it allows a stack of Bricks to communicate

with each other.

2.6.5 Programmable toy trains

In the “Tangible Programming with Trains” project [33], Fred Martin and Genee Lyn

Colobong built an interactive play environment based around a toy train set to allow

young children to learn “pre-programming concepts.” The train itself contained a small

microprocessor and an infrared receiver. Around the track there were a number of signs

and signals containing infrared transmitters. Children controlled the train, not with the

The Block version 1.2
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traditional remote control console that came with the train set, but rather by moving the

signs and signals around the track. The collection of signs included stop, faster, slower,

lights on, lights off, and sound horn. The children found it fun to arrange realistic scenarios

like making of the train turn its lights on when it goes into a tunnel, but in essence they

were engaged in a kind of programming activity.

2.7 Tangible Syntax

My original motivation for pursuing tangible programming techniques was to provide

tools for programming computers that were more conducive to learning and collabora-

tion than traditional keyboard-, mouse-, and display-based programming environments.

I imagined a new generation of young programmers building programs together with

their hands instead one person typing on a keyboard and others looking over their

shoulder. However, my notion of programming as an activity was narrowly focused on

the construction and manipulation of traditional text-based programming languages

such as Logo. Even though the inventors of Logo worked hard to simplify its syntax,

syntactic elements such as brackets still remain. Here I show a concept example of a user

Learning “pre-programming” with a modified Tomy train set
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balancing brackets with a “touch transponder.” As she touches one bracket, the match-

ing bracket lights up.

During the development of the LEGO Tangible Programming Brick I continued to con-

cern myself with giving the user feedback about syntax. The three LEDs were designed

to provide feedback about nesting of syntactic structures, for example a “repeat” sur-

rounding an “if”.

As I began to focus on simpler languages, syntactic issues assumed less importance, but

never entirely disappeared. Logo Blocks uses virtual connectors deliberately shaped to

indicate the type of blocks they are allowed to mate with. The Logo Blocks graphical pro-

gram editor enforces these syntactic constraints by allowing only blocks with correctly

mating connectors to be “snapped” together. This “puzzle pieces” approach to avoiding

syntactic errors works even better in the physical world, because these constraints do not

have to be simulated. Mismatched connectors literally won’t fit. Color can also be used

:sizeto square

repeat 4

[ forward :size

right 90 ]

end

compile

run

glue
reveal

100

make

Balancing brackets with a “touch transponder”



36

to indicate syntax, but just like screen-based visual programming languages, too many

colors can lead to an undesirable “tutti-frutti” effect.

2.8 Programming Styles

I considered a number of programming styles during the design of my tangible pro-

gramming languages: functional programming, imperative programming (regular,

sequential programming with state and side-effects), and rule-based programming.

2.8.1 Imperative programming

Imperative programming is the oldest, least restrictive, most common style of program-

ming. Sequential evaluation, state, and “side effects,” the modification of variable, data

structures, and objects in the outside world are all allowed. All of these issues are diffi-

cult for students to learn because they can have subtle repercussions. In fact, they are a

major contributor to errors in commercial software.

2.8.2 Functional programming

Functional programming is a style of programming which does not allow sequential

evaluation or side-effects. As such it is the most “mathematical” of programming styles.

It has the advantage that it is easier for people to learn, and functional programs are eas-

ier for machines to manipulate, optimize, and prove properties about. It has a number of

disadvantages, namely that it is difficult to make functional programs as efficient as

imperative programs, and there are certain classes of problems which are difficult or

impossible to solve with functional programs.

Mitch Resnick (et al.) proposed to the National Science Foundation a course of research

which includes experiments with sensor blocks, function blocks, and effector blocks

(motors, lights, musical instruments, etc.), to give younger children (K-3) the tools to

learn about functions, integration, and derivatives, concepts usually taught in high

school [48]. My Tangible Programming Bricks provide the literal building blocks to pur-

sue the parts of this proposed research concerned with teaching about function blocks.
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2.8.3 Rule-based programming

Rule-based programming is a form of program organization. It is an attractive metaphor

to implement in tangible form. One significant advantage is that programs are divided

up into individual “rules” which can be modified independently of each other. This

means that a small group of students can build a program together without getting in

each other’s way. In one language I designed (but did not implement), a rule consists of a

message receiver Brick on top, followed by action Bricks which cause something to be

performed when the message is received. A program is a collection of rule stacks. The

message receiver Brick is similar to the LEGO RCX Code “sensor watcher,” except that

here the “sensor” is waiting for an infrared message to be sent. In RCX Code, a sensor

watcher is a special kind of program building block which waits for a certain condition

(e.g. temperature has risen above 100 degrees) and triggers a stack of code to begin exe-

cution.

A train carrying tangible “rules”
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2.8.4 Behavior mixing with priorities

In the spirit of Rod Brooks’ subsumption architecture model of robot programming [8],

several readers suggested that each Brick represent a single behavior, and that stacking

Bricks together would cause the behaviors to be “mixed,” with behaviors of the higher

Bricks taking priority over the lower Bricks. This is an attractive programming meta-

phor, in particular because it reduces the chances that a program will be “wrong.” One of

the attractive features of mechanical construction kits is that they allow children to

explore structural in mechanical systems without the fear that they might do something

wrong. On the other hand, when children and adults learn how to use computers it is

common to hear people described this very fear.

Brooks’ original papers on the subsumption architecture might lead the reader to believe

that mixing behaviors is easy. His graduate students and employees at IS Robotics who

have been exploring the subtleties of robot programming tell a different story, that the

architecture provides a good foundation, but getting good robot behavior requires care-

ful fine tuning [11]. 

2.8.5 Database queries

With the growing popularity of the World Wide Web, professionals and nonprofession-

als alike are finding themselves searching for information on a daily basis. Boolean

expressions are frequently used to filter out the junk and hopefully leave us with what

we were looking for. Whereas textual queries often require connective ANDs ORs, and

NOTs, a tangible query might take a to the approach to syntax, representing AND as a

vertical stack of filters, and OR as separate stacks in the horizontal dimension. For exam-

ple, 

Eyes: blue Hair: brown
Height: average Height: tall

would mean “eyes = blue AND height= average OR hair = brown AND height = tall”.

The Tangible Programming Bricks are best suited for applications which are limited to a

small vocabulary, so unrestricted web searches are not practical, but certain database
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query applications are. For example, searching for clothing from a retailer’s inventory

database can be a fun, creative activity. It requires only a small set of filters and attributes

that can be used over and over again: color, size, style, material, and category (pants,

shirt, dress, socks, etc.). Color is difficult to describe as text, fortunately color “chips” can

be used in a tangible database search. Searching a personal collection of documents can

be a similarly bounded problem: authors in co-authors, subject, conferences, journals,

and publishers, and recent years might only half a handful of choices each.

With a variety of programming languages in mind, I set out to design the elements of a

tangible construction set that could be used to build programs. In the next chapter I

describe the design of the Tangible Programming Brick, its associated plug-in cards, and

the experiments I performed with the first set of prototype Bricks.
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Chapter 3 — The Implementation

This chapter offers details of the Tangible Programming Brick. It begins with an over-

view of the first prototype that was built inside of a 4x2 LEGO System brick, it goes on to

present the hardware and software design, and concludes with an overview of three

applications I implemented using a set of the Bricks.

3.1 The Tangible Programming Brick Hardware

3.1.1 The early 4x2 design

The early prototype for the LEGO Tangible Programming Bricks was a 4x2 LEGO brick.

The circuit design was based on the Ladybug. It contained a PIC16C672, a single LED,

communication to neighbors above and below, and a “mode” input. The mode input is a

global signal which passes through all of Bricks. This design was abandoned because it

promised to be difficult to debug, in part because it didn’t have the infrared communica-

tion ability which is used to program members of the Cricket family. But the main reason

A prototype of the early 4x2 Design
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for moving to a 6x2 design was that there seemed to be a need for some sort of parameter

mechanism, especially because my Bricks could be assembled only in a one-dimensional

sequence, or stack. The extra space provided the option of using an 18 pin PIC and a

ceramic resonator, avoiding the oscillator calibration problems that I experienced with

the Ladybugs. Also I became interested in using LEDs to give feedback to user about the

structure of the program being assembled, for example to show the syntactic extent of

special forms like if and repeat, as shown in this diagram.

If

Repeat

OnFor

Wait

End Repeat

End If

Too Hot

x3

10 sec.

5 sec.
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3.1.2 The 6x2 Brick design

For my thesis, I implemented the Tangible Programming Brick, which was housed inside

a custom 6x2 LEGO brick. Each Brick has a “smart card” (ISO-7816) connector, a female

connector on the top, consisting only of metal pads on a printed circuit board, and a male

connector on the bottom (a JST-ICC). This connector has eight gold plated springs which

press against the printed circuit on the female connector. The connector system passes

power, serial communication between neighbors, and a global “run/stop” signal. This

global signal exactly corresponds to the Cricket run button functionality. It can be used

to start and stop running programs on all of the Bricks in a stack simultaneously. In the

user environment, this feature is not necessary because Bricks, like Crickets, can be con-

figured to auto-start, running their embedded Logo program as soon as they are pow-

ered up. To allow for rotational symmetry, making it possible to snap together Bricks

“backwards” (rotated 180 degrees front to back), the four power/signal lines are dupli-

cated. This redundancy also provides an additional measure of fault tolerance for situa-

tions where the connectors are not seated properly.

A stack of three Tangible Programming Bricks
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Each Brick has three program-controlled LEDs on the front. Originally intended for user

feedback, they have proven invaluable for debugging. Unlike the Cricket, there is no

“run” light or power light, so there is no way of knowing whether the Brick is function-

ing correctly without making explicit provisions in the Logo program. The PIC processor

has one unused I/O pin, enough to provide one additional LED, but there is no space

available in the current design. Currently the LEDs are colored orange, amber (yellow),

and green, reminiscent of a traffic signal. Red it was explicitly omitted because this color

is reserved for signaling fault conditions by a number of national and international stan-

dards agencies.

The Tangible Programming Brick design was highly constrained by the size of the plastic

capsule. The printed circuit boards inside are very small. This left little space for inter-

board connectors, so I had to use free-standing header pins to make electrical connects

between the three PC boards.

Exploded view of Tangible Programming Brick electronics
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The design of the Tangible Programming Bricks is modular in several ways. (1) The

Bricks stack together to form a system or program, and (2) a selection of cards is avail-

able to customize or augment the function of a single Brick.

3.1.3 The Cards

Each Brick has a slot on the side which accepts smart cards of nonstandard size that can

be inserted into this slot to extend or customize the Brick.

I designed and built three types of cards that slide into the card slot on the side of the

Tangible Programming Bricks.

• The IR/bus Card consists of an IR transmitter and receiver, a transmit LED for 

monitoring and debugging IR communications, and two Cricket bus connectors. 

This card allows the Brick to act as a member of the Cricket family. It can be used 

A Tangible Programming Brick + IR/Bus Card

3 LEDs

2 Bus

IR

IR

ISO-7816
Connector

Connectors Receiver

Transmitter
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for communicating with Crickets and other Bricks, for downloading Logo soft-

ware from a desktop computer, and for communicating with Cricket bus devices 

such as sensors and motors. 

• The EEPROM Card was designed for providing parameters to a Brick, but it can 

also be used for permanently recording information for later recall over for pass-

ing physically to other Bricks. 

• The Display Card was designed for representing variable names or less common 

parameters, but it can be used for displaying any alphanumeric information, such 

as the temperature recorded by a LEGO temperature sensor.1

For maximum flexibility, two power and six signal lines are available to the cards.

• I2C serial data

• I2C serial clock

• Touch sensor/Beeper

• IR transmit

• IR receive

• Cricket serial bus

The I2C serial bus signals were extended to the card so that the EEPROM Card could be

implemented using a single chip. In retrospect this was a mistake because the I2C bus is

used by the Logo interpreter almost continuously. When a the EEPROM Card is inserted

or removed, the communication between the PIC processor and the internal EEPROM is

disrupted. This crashes the Cricket Logo interpreter. By contrast inserting or removing

the IR/bus Card does not disrupt the processor. This makes it easy to program or cus-

tomize an entire stack of Bricks sequentially with a single IR/bus Card by moving the

card from Brick to Brick.

The IR transmit and receive lines are necessary to program the Brick using Cricket Logo

running on a desktop computer. Originally I tried to fit the IR components inside the

Bricks, but there was not enough space inside the plastic capsule. Fortunately, once a

program has been downloaded into a Brick there is no need for IR communication.

1. Several Display Cards were manufactured, but I didn’t have time to write the firmware.
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Every card that plugs into a Tangible Programming Bricks has the option of including a

capacitive touch sensor with no additional components. The card merely needs about

one square centimeter of exposed metal on the top of the printed circuit board, prefera-

bly plated with gold for electrical and health reasons (lead-based solder is best if not

touched). All three cards described here have a capacitive touch sensor pad.1

The Cricket bus is a bidirectional serial bus that can be extended to remote to devices or

used to communicate to a Cricket bus device implemented directly on the card. An

example of one such device is the Display Card.

3.1.4 The Evolution of Intra-Stack Communication

The Tangible Programming Brick is a descendant of the Cricket, and incorporates ideas

that were first tried in the Block 1.2. The Block was designed to have the regular Cricket

bus, which I shall call the Master Bus, and an additional bus connector, which I shall call

the Slave Bus. Although this allows communication in two directions, it is not a symmet-

rical arrangement. The Master Bus can initiate communication with a bus device and can

wait for a response, whereas the Slave Bus must passively listen for communication from

another member of the Cricket family, and may respond only when “spoken to.” This

arrangement allows any device with a Slave Bus connection to serve as a “bus device” to

any member of the Cricket family, but it constraints control and information to flow pri-

marily from below (see Kitchen Brick in Appendix B for details). In the Tangible Pro-

gramming Bricks, I decided to bias control flow so that Bricks on the bottom could

initiate communication with Bricks above. This was motivated by the “compiler model”

of tangible programming. The reverse is required to implement the “method model”

where actions are directed from a top “listener” Brick. For this reason, future versions of

the Bricks may provide a more symmetrical communication architecture.

1.  The IR/Bus Card has a capacitive touch pad of minimal size included only for testing purposes.



47

3.2 The Tangible Programming Brick Software

3.2.1 Firmware

The firmware used in the Tangible Programming Brick is a modification of the “Blue

Dot” Cricket Logo interpreter and operating system. The most significant modification

to this code was the addition of the interrupt-driven “slave” bus facility. To the Cricket

Logo user who is familiar with the IR receiver primitives new-ir?  and ir , the new bus

primitives will be easy to use. These new primitives are new2?, bus2 , which corre-

sponds directly to the IR primitives, and reply2 , which is used to reply to a bsr  sent

from below. 

The second major new facility is the capacitive touch sensor. sensora  returns a number

between 0 and 255 which represents the amount of capacitive loading on the touch pad

of a card. set-touch-range  allows the user to set a pre-scale parameter which can be

used to adjust the dynamic range of the sensor. touch-range  can be used to read back

this parameter. 

The third new facility is used to read and write data to the EEPROM on a parameter

card. aget2  and aset2  correspond respectively to aget  and aset , except that they

access arrays stored on the card instead of the main Cricket EEPROM. It must be noted

however, that there is still only a single array  declaration, so naming of arrays can be

slightly confusing. Where on a regular Cricket there is only one array of a given name,

on a Tangible Programming Brick, an array name refers to one array that always exists,

and a second array, which only exists if a card is inserted. If no card is inserted elements

of the second array read back as -1  (negative one).

LEDs on the Tangible Programming Brick are controlled using the Cricket motor com-

mands, in a somewhat counterintuitive manner. This was done partly for expediency,

and partly back compatibility with the Blue Dot Cricket.1 The orange and yellow lights

are controlled by motor a, and the green light is controlled by motor b. To light orange

1. A regular Cricket Logo programming environment can be used if no Brick-specific commmands are 
called. If they are, extra descriptors need to be appended to the compiler primitives list in setup : 
new2? r 0 bus2 r 0 reply2 c 1  aset2 c 3 aget2 r 2 set-touch-range c 1 touch-range r 0
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and yellow together, you use the brake  primitive. To light an individual LED of the “a”

pair, you use the on primitive. The direction selects which LED. thisway  selects the yel-

low light, and thatway  selects the red and green lights. The setpower  primitive sets the

brightness of individual LEDs (Note: low power settings cause noticeable flickering).

3.2.2 Application code

The application code for the Tangible Programming Brick is written in Cricket Logo on a

Mac or PC and downloaded into each individual Bricks using an IR/bus card. For the

dancing cars and microwave oven demonstrations, each Brick ran a very simple pro-

gram which allowed a stack of Bricks/cards to be scanned in a “bucket brigade” or “shift

register” fashion by a Cricket connected to the base of the stack. The microwave oven

demo also allowed the Cricket to remotely control the LEDs of each Brick. This was used

to indicate which step of the program was being currently executed. Also, a mechanism

was provided to remotely right data onto EEPROM cards. This was necessary because

the IR/bus card could not be used while a EEPROM card was inserted. 

The style of programming I adopted for the Bricks was strongly influenced by technical

details of the Cricket bus protocol. Each Brick has two bus ports, a master bus which can

communicate to a Brick above or through the card slot, and a slave bus which listens for

communication from below, much like the existing Cricket IR receiver. The only way to

receive data from above is with the bsr  instruction, which sends a byte on the master

bus, and waits for a byte in reply. The biggest constraint with this arrangement is that the

bsr  instruction only awaits 100 milliseconds for a reply. With ordinary Cricket bus

devices, this is not problem. Because their firmware is written in assembly language,

they reply quickly, but the application code inside a Brick is written in Logo, which can

interpret only about 30 lines of code within the time-out period. This means that after

overhead reserved for the dispatch mechanism, very little time remains for a reply to be

computed, and it is completely impractical to recursively poll Bricks further up the stack

in order to make a reply. In the end, I adopted a two phase scanning mechanism which

treated a stack of Bricks as a shift register chain. Once individual pockets in the shift reg-
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ister were initialized, each shift operation could be done very quickly (For details see the

“Kitchen Brick” section of Appendix B).

3.3 The Tangible Programming Brick Demonstrations

Using a small set of Tangible Programming Brick and parameter cards, I implemented

three different scenarios to demonstrate the utility of tangible programming.

3.3.1 Dance Craze Buggies

In the fall of 1998, Rick Borovoy and Fred Martin created the first demonstration of Boro-

voy’s “tradeable bits” technology: the Dance Craze Buggies—toy cars that teach each

other how to dance. Borovoy writes:

Imagine a child teaching her robotic toy a new dance step. Then, when she is playing 
with a friend, her toy can “teach” this new dance to her friend’s toy. Later, her friend 
can modify this dance a little, and pass it on to another friend. The creator of the 
dance can check the Net to see how far her dance has spread (“150 toys know my 

dance!”) [6].

The Tangible Programming Bricks were able to neatly complete the picture in Borovoy’s

story about the cars. His intention all along was that kids would initially teach their car a

new dance. What was missing was a compelling, practical way to teach new dances

without a computer. To solve this problem we built a “teacher” device (nicknamed the

“phaser”) that accepted a stack of my Bricks. When the “trigger” was pressed, it taught a

car the dance steps specified by the stack of Bricks. Each Brick was labeled with a dance

step (big step forward, big step back, little step forward, little step back, and wiggle

tires), and accepted parameter cards which either specified the number of repetitions of

that dance step, or that the dance step should be performed and reversed (“forward and

back”). This demonstration worked beautifully for the Toys of Tomorrow exhibition in

May of 1999. The great feature was that we could finally offer a visitor the collection of

Bricks and parameter cards, and say “would you like to invent your own dance?”
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This experiment raised some interesting questions. One of my motivations for working

on tangible programming is the intuition that, if software is more visibly coupled with

the devices being controlled, then it will be easier for young children to understand. Soft-

ware that is invisibly stored inside a computer but the device being controlled is in the

world can be truly cryptic. A stack of tangible Bricks on the “phaser” teacher device got

closer. And finally a stack of Bricks directly on the dancing car is the most closely cou-

pled, and I postulate is the easiest to understand (See “Robotic vehicles and “spatial”

programming” on page 61.).

3.3.2 Kitchen appliances

Modern kitchen appliances such as microwave ovens, bread makers, and even coffee-

makers can be programmed and personalized to a limited extent. These limitations come

primarily from deficiencies in the user interface. A busy professional might want to com-

municate a simple program to his microwave oven: defrost for 10 minutes, then cook for

20 minutes, and have everything finished by 5:30. This sort of programming was once

common on high-end microwaves, but the sequence of keystrokes required to express

this can be confounding. Using tangible programming techniques, this same program

can be expressed by assembling three Bricks and three cards:

[Defrost] [:10] 
[Cook] [:20]
[Finish by] [5:30]

For the Fall 1999 meeting of the Media Lab Counter Intelligence consortium, I imple-

mented a tangible programming language to control an actual microwave oven. Photo-

graphs of the Kitchen Bricks can be found on page 14 and page 15. Details of the

software can be found in Appendix B.

3.3.3 Toy trains (revisited)

Although Martin and Colobong’s train (described on page 33) demonstration was com-

pelling and complete, I was inspired to go one step further by letting the child choose

how the train would react to each signal. In this scenario each signal is given a distinct

color, but the meaning of a signal is not predefined. In fact each train is free to respond
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differently to a given signal. For every color of signal, each train has a corresponding car

of the same color. Placing Tangible Programming Bricks on a car determines the train’s

behavior when it passes a signal of the same color (see figure on page 37).
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Chapter 4 — Discussion

4.1 Design Issues

4.1.1 Communication issues

At runtime, traditional object-oriented programming environments provide a perfectly

reliable message passing substrate. But when real objects are involved, and when com-

munication between objects needs to be wireless, a number of issues arise. First and fore-

most is reliability. Closely related is predictability. The last thing we want in a toy or

learning environment is the frustration and uncertainty of unreliable communications.

Radio communication has the advantage that it is omnidirectional, but it is expensive

and difficult to engineer. Infrared communication is inexpensive and uses small parts,

but neither transmitters nor receivers are omnidirectional. Typically their broadcasts and

reception patterns resemble a 30 degree wide cone. Infrared transmitters can be “ganged

together” and arranged in a circular array, but receivers cannot. Tomy solves this prob-

lem in their infrared controlled Tomica World toy train system by using a conical mirror

and an upward facing receiver to achieve a 360 degree reception pattern. Note that this

does not solve line of sight issues.

In certain situations, global, omnidirectional communication is not desirable. In the train

and signal scenario (discussed in sections 2.6.5 and 3.3.3), we want the train to exhibit

certain behavior when it “sees” a signal tower. In this case, short range, directional com-

munication is more desirable.

From the user’s standpoint, a disadvantage of using infrared light is that it is limited in

range, directional, and invisible.1 This makes debugging difficult unless we provide a

device to make the beam visible in some way. Rather than a debugging device which

simply shows where a beam is projected it would be preferable to have a device which

shows the messages being transmitted by a particular beacon.

1. Radio waves are also invisible, but it is easier to understand them because they are omnidirectional, 
at short range they go through most objects, and for small setups, range is not an issue.
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Leading up to the design of the Tangible Programming Brick, I spent months researching

power sources and connectors so the Brick would have just the right size and feel.

4.1.2 Power

During the development of the second generation of Kwin Kramer’s Beads (see [27] for

details), I investigated how to provide power to the beads so that we wouldn’t have to

put a battery in each one. I considered capacitive coupling, inductive coupling (trans-

formers), and DC coupling (connectors). In the end, I rejected capacitive and inductive

coupling, mostly for health reasons (people get nervous when high voltage electrostatic

and high-power radio frequency fields are near their children). DC coupling appears to

be the only viable means to provide external power, but to do a good job of providing

reliable power requires good connectors. 

4.1.3 Connectors

After extensive study of commercially available (as opposed to custom-designed) con-

nectors systems, I have concluded that connectors that are good for children are bad for

industrial applications, and vice versa. Industrial connectors which rely on friction to

stay in place generally require too much force to insert and disconnect. Low insertion

force connectors do exist, but they are expensive, and generally require a two-step pro-

cess to connect or disconnect (insert + lock, unlock + remove). The most attractive con-

nector systems appeared to be ones where the connector does not provide the

mechanism for maintaining contact. An everyday example is the connector system on

laptop, cell phone, and camcorder batteries. Here, a set of gold plated springs are held

against a set of gold plated pads are held against each other by a latch mechanism built

into the case of the portable device. This is the class of connectors I chose for the Tangible

Programming Brick. Commercially available battery connectors were too large (contacts

on 0.100" spacing). But, the ISO-7816 “smart card” the connector system proved to be

perfect. The male connector provides 8 pins in a 4x2 grid, and the female connector is

just a gold plated PC board pattern familiar to Europeans. I used this connector system

both for Brick to Brick (stacking) connections, and for the card slot (a more traditional

use for the ISO connector).
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4.1.4 Signaling and power: To multiplex or not?

A very attractive prospect would have been to use a two contact connector like LEGO’s

standard 2x2 electric plate. This would require multiplexing power and signaling (data).

I wanted two kinds of signaling: neighbor to neighbor and global signaling (bus). Multi-

plexing a global power and data bus is not difficult. Several schemes are in commercial

use. LEGO uses a time division scheme for its rotation and reflectance sensors. Power is

provided for part of the time, and data is returned in analog form during the remainder

of each cycle. Other systems use DC for power and superimpose an AC signal for data.

Reconciling neighbor to neighbor communication and bused power is another matter.

Theoretically it is possible to de-couple Bricks from each other using diodes, but the volt-

age drop across each diode makes voltage regulation problematic. In the end, I chose to

use four conductors: power, ground, global, and neighbor to neighbor communication.

The “smart card” connector has eight conductors. I use the redundant conductors to

allow 180 degree rotation of Bricks with respect to each other. In other words, electrically

there is no wrong way to stack Bricks. Ninety degree rotations are not allowed, but they

are prevented by mechanical means (the Bricks don’t fit together this way).

Other signaling in power arrangements are possible. For example power could be dis-

tributed using a two conductor connector, and neighbor to neighbor signaling could be

accomplished using infrared signalling (as in Kwin Kramer’s tiles). I chose not to use this

scheme to reduce space and part counts, but we may consider this system in the future.

4.1.5 Optical issues

The three LEDs in each Brick need to be visible from a large range of angles. For cosmetic

reasons I chose to use “light pipes” to guide light from the surface-mount LEDs (which

faced downward on the printed circuit board) to the exterior. Having separate molded

plastic pieces for the light pipes would have provided more optical flexibility, but at

LEGO’s request I settled for a two piece case design, with the transparent bottom piece

doubling as a light pipes. The design as it was produced is effective at directing light out

the front of the Brick, but in actual use, it doesn’t work very well. This is because a stack

of Bricks is frequently viewed from above (at perhaps a 45 degree angle). In the next revi-



55

sion (if there is one), we plan to use an extra prism in front of the mirror to direct light

slightly upward as it leaves the light pipe. 

4.2 A Design Critique

Admittedly there are a number of valid criticisms of the (first generation) Tangible Pro-

gramming Bricks:

They are uniform in shape. Shape is important semantic cue. When selecting and sort-

ing objects uniform shades are more difficult to work with. Shape can also suggests func-

tion and program structure.1

They can only be stacked in one dimension. Screen based visual and textual program-

ming languages are traditionally two-dimensional from the user’s perspective, even

though they are frequently “parsed” and interpreted as one-dimensional strings by com-

pilers and other language tools. A specially designed “bridge” card would allow limited

two-dimensional structure using the current Bricks. This way two stacks could be joined

side-by-side.

They are expensive. The toy industry and school systems alike are extremely cost-con-

scious. Although I have eliminated one major source of cost by not requiring batteries in

each Brick, the microprocessor and the connector system are expensive—too expensive

for consumer and educational products consisting of dozens of Bricks. Even if one were

to reduce the part count and use in expensive “gob of glue” chip packaging, the high-

quality connector system required may still make productization infeasible.

4.3 User testing

At this writing I have not performed any formal user testing. However, Rick Borovoy and

I were able to make informal observations of dozens of first-time users who visited our

Dance-Craze Buggies demonstration. With each new group of participants, we gave a

1.  Henry Lieberman suggests that Bricks representing nested commands like repeat and end repeat 
have offset connectors. This way the loop “body” will be indented automatically.
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brief overview of our system, and giving an example of its use. We showed how the

Bricks snap together, and we showed how the parameter cards slide in the slot on the

side each Brick then we offered a handful of Bricks to a participant so they could create

their own dance for the dancing cars. Without exception, we observed that the partici-

pants were able to effectively assemble a stack of Bricks and insert parameter cards to

create a dance. Because the dances were highly creative and nature, there was no such

thing as a “wrong dance,” and consequently there was no opportunity to study whether

or not users were able to correctly execute a goal.1 One incidental observation we made

was that most participants used every available Brick in their dance. I speculate that we

would not have seen this behavior if the participants had a larger selection of Bricks to

choose from (i.e. larger than a reasonable length dance).

During the “Kitchen Brick” demonstration there was almost no “audience participa-

tion,” however the middle-school-aged son of one of my colleagues asked if he could try

his hand at programming the microwave using the Bricks. He asked good questions and

quickly discovered a shortcoming of my prototype: I had to explain that there were two

types of bricks, ones that required parameter cards, and ones that didn’t, but because my

Bricks all had a functioning card slot, there was no way for him to determine this on his

own. This suggests that I should have taped over the slot in the cases where no card was

needed, thus removing the inappropriate affordance.

1. Fred Martin comments that this is “not necessarily a problem. Who says users have to have an 
explicit goal? If anything I see this as a big feature. Conventional programming systems don’t typi-
cally allow program ‘doodling.’ If your system does, that’s a big win.”
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Chapter 5 — Future Work & Conclusion

5.1 The near term

5.1.1 Formal user testing

My intention from the very beginning of this project was to build several dozen of the

Tangible Programming Bricks and to test them with children between the ages of 7 and

14. I did a prototype run of 8 Bricks, but manufacturing difficulties and time constraints

prevented us from embarking on the production run of 30 to 40 Bricks. Time constraints

alone prevented us from performing limited user testing and the shortage of Bricks

would have made it difficult to conduct the full-scale testing I had intended from the

outset. Given additional time I would certainly do a production run and full user testing.

In this document I have described a number of programming metaphors, and it would

be especially revealing to compare children’s experiences with different types of tangible

programming languages using the Tangible Programming Bricks I have already imple-

mented. It would also be very interesting to study adult subjects across several age

ranges.

5.1.2 Expanding beyond linear stacks

A major shortcoming of the current design as implemented is its strictly one-dimen-

sional nature. Implementing a Brick which connects to neighbors in two or three dimen-

sions is a natural next step, but one which is replete with design issues which would take

months to explore. Another shortcoming of this design is the decision I made about

power sources. To make individual Bricks and small assemblies “come alive” we may

want to reconsider including batteries or providing some other way of powering Bricks

while they are being handled and before they had been assembled into a program.

5.1.3 Issues of size and shape

The Tangible Programming Bricks were designed to be small based on the theory that

you want be able to build programs out of many Bricks. For professional use by adults
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the ability to construct large programs it is attractive, but for children learning about pro-

gramming short programs and especially programs of low complexity are likely to be

most common. I have considered but not pursued the implementation of larger Bricks

suitable for preschool children and toddlers. This would be a natural course of follow-up

research.

With only one shape of Tangible Programming Brick the user’s ability to differentiate

between among Bricks is constrained to color, icon, and text. I believe it would be valu-

able to explore Bricks of different shapes and Bricks with differently shaped connectors

based on the semantics of the particular tangible programming language being imple-

mented, much like the Logo Blocks system [49], which uses a “puzzle pieces” metaphor

for connecting blocks, and makes a distinction between control flow and data flow con-

nections.

5.2 Alternate implementation mechanisms

I explored a number of mechanisms for implementing tangible programs. Most of my

efforts were spent pursuing building blocks containing an embedded microprocessor,

but no batteries, and which communicated with each other and distributed power

through electrical connectors. This system is expensive, surprisingly not due to the cost

of the microprocessor, but because of the cost of the connectors and packaging. 

5.2.1 Bar Codes

My original proposal was to place bar codes on the backs of plastic tiles, which would

have a “feel” similar to dominos, and to scan these bar codes using a desktop augmented

with a bar-code scanner. Flatbed scanners are becoming inexpensive consumer products,

so the bar-code system is relatively inexpensive, but this system isn’t nearly as portable

as the Tangible Programming Bricks, because users are restricted to working on a fixed

work surface containing an embedded scanner.
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5.2.2 RFID tags

Radio Frequency Identification (RFID) tags offer an inexpensive, portable implementa-

tion strategy. The holy grail of RFID research is a tag which can represent a nontrivial

number of bits of information (say, 8 or more bits) and which costs pennies per tag. For

tangible programming purposes the tag needs to be able to sense the identity of neigh-

boring tags. This way the topology of a tangible program can be determined using a sin-

gle tag reader. Rich Fletcher and the MIT Media Lab Tangible Media Group have

demonstrated a system using glass bottles as a metaphor for “tangible information con-

tainers.” Most recently they used glass bottles outfitted with simple RC resonant tags

wound around the necks and bottle-stoppers with embedded ferrite rods that modified

the resonant frequency of the bottle’s tag [22]. A table outfitted with an inexpensive tag

reader [13] can sense the presence of particular bottles and determine whether each bot-

tle is opened or closed (one bit).

To determine the suitability of this technology for tangible programming, I performed

some informal experiments that confirmed that an LC resonant tag can be used to sense

the identity of its neighbor. This allows a tag reader to determine the topology of an

entire assembly of tiles or bricks using only one antenna. In my experiments, the neigh-

bor’s identity was encoded by the mass and geometry of a piece embedded of ferrite.

Although this demonstrates a proof of concept, Fletcher estimates that this technique

will not scale beyond approximately 8-16 unique tags. This means that the “fashion

designer” database query (introduced on page 39) might be feasible, but expressing a

seven-digit phone number would not.1

5.2.3 Specialized work surfaces

If we are willing to place our tiles on a specialized surface, a number of technical benefits

can be derived. For example, a mat of conductive Velcro can be used for two purposes: it

can serve as an anchor for keeping assemblies of tangible tokens or tiles from moving

1. For the tag reader to unambiguously determine the sequence of digits, this would require 7×10 = 70 
uniquely tagged tiles (e.g. it is not sufficient for all 5s to have the same ID).
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around on the work surface, and it can provide a single strong electrical path for electro-

statically coupled RFID tags. 

5.2.4 Reusable/Re-printable blocks

Up until this point I have talked about tangible programming applications with fixed

vocabularies. The original proposal for this thesis was to implement a system which

included a “block printer” which could make new blocks (or recycle old ones) on

demand. The presence of a block printer can significantly enhance the utility of a tangi-

ble programming system. In addition to simply creating new vocabulary as needed, the

block printer can engage the user in a sort of dialogue, where the user constructs new

structures and the block printer “creates” structures in response, closing the loop.

Rewriting the “machine readable” part of an old block to create a new one is easy. Recy-

cling of the “human readable” part is a bit more of a challenge. If power and expense are

no issue, LCD displays are an option. There are even by stable LCDs which only require

:sizeto square

repeat 4

[ forward :size

right 90 ]

end

square

compile

run

glue

reveal
100

make

Block “printer” expands tangible vocabulary
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power to change state. Electronic ink (a.k.a. “E-ink”) is an area of active research but

there exists a viable low-tech solution: thermochromic inks and plastics. These are mate-

rials which can be erased by cooling (e.g. using a Peltier junction) and printed or

reprinted using a garden-variety thermal printer.

5.3 Applications

5.3.1 Music synthesizers

Flip to the back of the liner notes in the CD of a modern keyboardist like Chick Corea,

and you are likely to find, along with credits for the session musicians, the name of

someone acknowledged for “synthesizer programming.” This is someone who combines

the talents of good sound designer and a technician who has spent countless hours mas-

tering the confounding user interfaces of modern synthesizers. Most musicians who use

synthesizers in novel ways run up against complex devices and frustrating user inter-

faces. 

Synthesizers are powerful reconfigurable devices. In the early days of electronic music,

analog synthesizers were collections of signal-processing modules that were physically

“programmed” with patch cords. By manipulating tangible modules that can be assem-

bled into a physical representation of the synthesizer’s signal chain, musicians will have

greater understanding and control over their music-making machines: a throwback to

the analog days, but without the noise and hum of real patch cords.

5.3.2 Robotic vehicles and “spatial” programming

In the spirit of Braitenberg [7] and reminiscent of early LEGOsheets applications, this

robotic vehicle scenario allows children to experiment with emergent behavior [44]. The

vehicle is equipped with two motors and bump sensors on the 4 corners. Also at each

corner is a tangible programming “pad.” Placing programming Bricks on a corner deter-

mines what the vehicle will do when that corner bumps into something. Two additional

programming sites are provided so the vehicle can be programmed to do something

more appropriate when both front or both rear bump sensors are triggered at about the
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same time. The vehicle in shown here could do a pretty good job of keeping itself from

getting stuck with only very simple rules.

5.3.3 Tangible interfaces for the visually impaired

Human computer interfaces for the visually impaired have been available for years, and

have made it possible for blind people fluent in Braille to get jobs as programmers and

computer operators. A Braille “terminal” consists of a one or two line mechanical “dis-

Forward Backward

Right

Left

Forward

Forward

A Braille Brick: “Channel 7”
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play” typically with 40 characters per line. Each character is formed by six or eight sole-

noid-controlled pins. This mechanism is typically used to simulate a multi-line “TV

typewriter” by providing a knob or slider that is used to select which line to “look at.” 

The heyday of Braille terminals was in the MS-DOS era of command-line interfaces and

text-based user interfaces. Commercial software designed for the general public could be

used unmodified by the blind. Window systems and graphical user interfaces, while a

great advance for the sighted, was a serious setback to blind computer users, who were

left without any way of using modern graphical software. Tangible user interfaces can

solve this problem directly, but they do offer some exciting new interaction paradigms

for Braille readers.

For limited vocabulary applications, sentences and computational expressions can be

assembled out of Bricks labeled with Braille words. A Braille “block printer” to create

new vocabularies or engage in a dialog with the user a cost it is significantly less than

that of a Braille terminal.

5.4 Conclusion

In this thesis I have presented technical details of the Tangible Programming Brick, a

stackable, programmable, electronic building block that I designed to conduct research

in constructive tangible user interfaces in general and tangible programming languages

in particular. I have discussed potential applications for this technology, and I have

described two domain-specific languages that we implemented using a set of my stack-

ing Bricks, one language for controlling toy cars and another for controlling microwave

ovens. Although I conducted no formal user testing, I did have the opportunity to infor-

mally observe dozens of first-time users who, after only a few minutes of instruction,

successfully used my system to control the toys and kitchen appliances. I expect that fur-

ther testing will confirm my hypothesis that the tangible programming techniques

developed in this thesis will lead to user interfaces that are easier to learn and easier to

use when compared to the graphical user interfaces of general-purpose computers and

the ad hoc, application-specific user interfaces found on today’s digital appliances.
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The Tangible Programming Brick is a general-purpose research tool based on the Cricket

architecture that can be repeatedly programmed using the Cricket Logo software devel-

opment environment. It features an innovative connector system that is both electrically

reliable and easy to assemble and disassemble by hand, and a number of features which

make it suitable for rich interaction with the user. Although this technology is probably

too expensive for immediate commercialization, we have begun to experiment with

techniques which promise to reduce costs to pennies per Brick (or tile).

My original motivation for pursuing research in tangible programming was to lower the

age at which children can begin to learn about programming. It became clear in the

course of my research, that tangible programming techniques have broad applicability

beyond educational toys, to the control of everyday digital devices. Recently it has been

suggested that the most exciting prospects for this research may be in the area of human

computer interfaces for the visually impaired, where graphical user interfaces are com-

pletely ineffective and where tactile, constructive tangible interfaces hold great promise

as a medium for communication and expression. 
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Appendix A — Schematics and  Drawings

 

A.1 Schematics

 

A.1.1 6x2 Brick – Top board

Notes: 

 

The two boards inside the 6x2 Tangible Programming Brick are connected using 10 free-

standing header pins. In the schematics for the top and bottom board, these pins are

grouped conceptually as a single “HEADER 10.” The “smart card” connector at on top of

the brick is connected to the top and bottom boards through 4 of these 10 pins (VCC,

GND, Mode, and Bus-master). 

The “HEADER 8” (Top Board J3) is the connector for the card slot. On the schematics, the

pin numbers do not directly correspond to the mating connectors on the cards.  Clearly

this is confusing, but there is a practical reason why this became so. The “tops” of the

cards inside the Brick actually face down, and this invalidated the pin numbering on the

JST-ICC connector.  This discrepancy became evident at the 11th hour, and it was easier

to change the schematic than to change the component library.

RB7
13

RB6
12

RB5
11

RB4
10

RB3
9

RB2
8

RB1
7

RB0/INT
6

RA4/T0CKI
3

RA3
2

RA2
1

RA1
18

RA0
17

CLKOUT
15

CLKIN
16

MCLR-
4

U1

PIC16F84

1
2

3

Y1

CERRES3

C1
0.1uF

VCC

R6 10k ohm

VCC

IR-in
i2c-SDA
i2c-SCL

LED2
LED3

Mode

IR-out
Bus-master

LED1

Touch1
Touch2

Bus-slave

1
2
3
4
5
6
7
8

J3

HEADER 8

IR-in
i2c-SDA

Bus-master

IR-out

VCC

Bus-slave

Mode

Touch1

i2c-SCL

R7

1k ohm
VCC

R8

2M ohm

LED2
LED3
LED1

VCC

2
1

3
4
5
6
7
8
9
10

J2

HEADER10

Bus-master

i2c-SDA
i2c-SCL

Revision 1.3

 



 

70

 

A.1.2 6x2 Brick – Bottom Board

A.1.3 IR/Bus Card
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A.1.4 EEPROM Card

A.1.5 Display Card

 

A.2 Engineering Drawings for L

 

EGO

 

 Plastic Casing

 

The following three pages are the engineering drawings I sent to L
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A.3 Proof Drawings faxed back to me by LEGO

 



 

76

 

Appendix B — Software

 

B.1 Kitchen Brick (Logo)

 

global [bucket counter temp]
array [dummy 2 brick-type 2 card-param 2 have-card? 2]

to kitchen-brick
  aset have-card? 1 1 ;true
  startup
  loop [
    waituntil [new2?]
    dispatch bus2 ]
end

to dispatch :bus2
  ;display :bus2
  if (:bus2 = $195) [ ;are you there?
    reply2 0 ;whereas 255 = no
    stop ]
  if (:bus2 = $196) [ ;read bucket
    reply2 bucket
    setbucket (bsr $196);recurse
    stop ]
  if (:bus2 = $197) [ ;write card
    waituntil [new2?] ;yes, be paranoid!
    settemp bus2
    if (temp > 30) [stop] ;must be valid
    waituntil [new2?]
    if (not (temp = bus2)) [stop] ;both must match
    aset2 card-param 1 temp
    stop ]
  if (:bus2 = $198) [ ;init bucket with card & type
    setbucket (read-card and $1f) + ((aget brick-type 1) * 32)
    bsend $198 ;recurse
    stop ]
  if (:bus2 = $199) [ ;flash/beep
    beep beep beep;more than a wink
    stop ]
  if ((:bus2 > $199) and (:bus2 < $1a9)) [ ;not us
    bsend :bus2 - 1 ;ask upstream
    stop ]
end
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to read-card
  ifelse (aget have-card? 1) [
    output get-card (aget2 card-param 1)] [
    output 0 ] ;dummy out for old firmware
end

to get-card :val
  ifelse (:val = -1) [;card in the slot?
    output 0 ] [; NIL can't be 255 because that's end marker
    output :val ]
end

to startup
  wait (aget brick-type 1) - 1 ;random / 3000
  ab, brake wait 1 off
end

to setbrightness :value ;0-7
    bsend $171
    bsend :value
end

to display :n
   bsend $170
   bsend :n / 256
   bsend :n % 256
end

 

B.2 Microwave oven controller (Logo)

 

array [list 20]
global [count foo rep-loc rep-count mm ss]

to uwave
  waituntil [not bsr $195] ;there
  wait 10
  bsend $198 ;init buckets
  wait 1
  setcount 1
  fill-list
  wait 1
  call-reversed
  off ;make darn sure
  waituntil [bsr $195] ;gone
  uwave
end
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to fill-list
  loop [
    setfoo bsr $196 ;get-something
    wait 1
    if (foo = 255) [
      stop]
    aset list count foo
    setcount count + 1 ]
end

to call-reversed
  setrep-count 1
  loop [
    if (count = 1) [
      ifelse ((rep-count > 1) and (rep-loc > 1)) [
        setrep-count rep-count - 1 
        setcount rep-loc ] [
      ;else
        stop ] ]
    setcount count - 1 ;count points past end
    setfoo (aget list count)
    ifelse (foo / 32 = 7) [ ; = repeat
      setrep-loc count  ;point past 1st rep'd instr
      setrep-count default (foo and $1f) 2 ] [;n
    ;else
      ifelse (foo / 32 = 5) [ ;end repeat
        if ((rep-count > 1) and (rep-loc > 1)) [
          setrep-count rep-count - 1 
          setcount rep-loc ] ] [
        ;else continue
      ;else
        do-something foo ] ] ]
end

to default :n :default
  ifelse (:n = 0) [
    output :default ] [
    output :n ]
end

to do-something :thing
  light-up count
  if (:thing / 32 = 6) [ ;stir
     repeat 3 [ ;alert
       note 25 2
       wait 1] 
     waituntil-door-open
     waituntil-door-closed
     stop ]
  if (:thing / 32 = 3) [ ;beep
    repeat 4 [
      light-up count
      note 20 5
      note 15 5 ]
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    stop ]
  ;; the rest require a card
  if (:thing and $1f = 0) [ ;no card -> complain
    repeat  3[
      note 10 3
      light-up count 
      wait 2 ]
    stop ] ;no card
  if (:thing  / 32 = 1) [ ;stand
    seconds-timer (:thing and $1f) * 10 ;sec
                         [light-up count]
    stop ]
  ; cook or defrost
  if ((:thing / 32 = 4) or (:thing / 32 = 2)) [ ;cook
    on 
    wait 1 ;clear bus
    seconds-timer (:thing and $1f) * 10 ;sec
                         [light-up count
                          ;assure-door-closed
                            if (switcha) [
                                off
                                stop-counting
                                waituntil-door-closed
                                start-counting
                                on ] ]
    off
    stop ]
end

to waituntil-door-open
     loop [
        wait 3
        light-up count
        if (switcha) [ ;door open
          stop ] ]
end

to waituntil-door-closed ;code dup
     loop [
        wait 5
        light-up count
        if (not switcha) [ ;door closed
          stop ] ]
end

to light-up :n
  bsend $199 + :n - 1
  wait 1
end

to setbrightness :value ;0-7
    bsend $171
    bsend :value
end
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to display :n
   bsend $170
   bsend :n / 256
   bsend :n % 256
end

to seconds-timer :ss :tick    ;code dup!
  setbrightness 6
  setmm :ss / 60
  setss :ss % 60
  display 100 * mm + ss
  wait 1
  set-timer mm ss
  loop [
    if (minutes = 0) [stop]
    display 100 * (59 - minutes) + (59 - seconds) 
    if (hundredths > 79) :tick
   wait 2]
end

 

B.3 Device Driver for Timekeeper bus device (Logo)

 

; $Bx - i2c write: 1st byte=addr, 2nd byte=data
; $Cx - prepare i2c read: 1st byte = addr
; $Dx - return unique id of this bus device
; $Ex - get i2c-read value

to i2c-write :addr :data
  bsend $1B7
  bsend :addr
  bsend :data
end

to i2c-read :addr
  bsend $1C7
  bsend :addr
  output bsr $1E7
end

to bcd-decode :bcd
  output (((:bcd and $F0) / 16) * 10) 
         + (:bcd and $0F)
end

to bcd-join :high :low
  output (:high * 16) + :low
end

to bcd-encode :x
  output ((:x / 10) * 16) or (:x % 10)
end
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to set-time :hh :mm
  stop-counting
  i2c-write 4 bcd-encode :hh
  i2c-write 3 bcd-encode :mm
  i2c-write 2 0
  i2c-write 1 0
  start-counting
end

to set-timer :mm :ss
  stop-counting
  i2c-write 4 0
  i2c-write 3 bcd-encode (59 - :mm)
  i2c-write 2 bcd-encode (59 - :ss)
  i2c-write 1 bcd-encode 99
  start-counting
end

to hundredths
  output bcd-decode i2c-read 1
end

to seconds
  output bcd-decode i2c-read 2
end

to minutes
  output bcd-decode i2c-read 3
end

to hours ;24-hour mode only
  output bcd-decode i2c-read 4
end

to day
  output bcd-decode ($3F and i2c-read 5)
end

to month
  output bcd-decode ($1F and i2c-read 6)
end

to year
  output ((i2c-read 5) and $C0) / 64
end

to weekday
  output ((i2c-read 6) and $E0) / 32
end

to time
  output (hours * 100) + minutes
end
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to stop-counting
  i2c-write 0 ($80 or i2c-read 0)
end

to start-counting
  i2c-write 0 ($7F and i2c-read 0)
end

to set-date :m :d :y :weekday
  stop-counting
  i2c-write 5 (bcd-encode :d) 
              or ((:y % 4) * 64)
  i2c-write 6 (bcd-encode :m) 
              or (:weekday * 32)
  start-counting
end

;;;;;;; Examples

;; Clock hh:mm
to clock
  loop [display 100 * hours + minutes wait 10]
end

;; Stopwatch ss:cc
to stopwatch

 

  loop [display 100 * seconds + hundredths]

 

end

;; Backwards (don't bring on airplanes)
to egg-timer :mm :ss :tick
  display 100 * :mm + :ss
  wait 1
  set-timer :mm :ss
  loop [
    if (minutes = 0) [stop]
    display 100 * (59 - minutes) + (59 - seconds) 
    if (hundredths > 82) :tick
   wait 1]
end

 

B.4 Cricket Logo interpreter/OS firmware (Assembly)

 

The following pages document the changes I made to the Cricket Logo firmware (“Blue

Dot” version 1.2, written by Brian Silverman, and maintained by Robbie Berg, Fred Mar-

tin, Bakhtiar Mikhak and the author) to create the Tangible Programming Brick. My

major contributions to the code include the “slave” bus, the capacitive touch sensor, and

support for a second EEPROM (the one on the card).
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;;;;;;;;;;;;;;;;;;;;;
;
; Blue Dot Classic Cricket
;
;;;;;;;;;;;;;;;;;;;;;
; 5-24-99 0.3 Added touch sensor range
; 5-24-99 0.2 Changed adcon1 to all digital, added touch sensor (sensora), stubbed 

sensorb
; 5-23-99 Removed Run Light, added visual beep, greeting
; 5-23-99 changed default EEPROM address to 1
; 5-23-99 changed I/O pins to match 6x2 brick
; 5-18-99 added external eeprom select (aset2 aget2)
; 5-2-99 added bus-slave port (new2? bus2 reply2)
; 10-12-98 (v1.2) changed prim-output to not be stupid.
•
•
•
; demons
        [const dbits $3d]
          [const running 7]
          [const last 0][const active 1]
          [const bus2f 2][const bus2bit9 3]
          [const ee-select 4][const ee-select-mask $10][const ee-default 1] 
          [const touch-range0 5][const touch-range1 6];[const unused 7]
        [const dcondl $3e][const dcondh $3f]
•
•
•
; i/o pin assignments
        [const touch-port porta][const touch1 0][const touch2 1]

        [const ir-in-port portb][const ir-in 0]                 ;was b0
        [const ir-out-port portb][const ir-out 1]               ;was b1
        [const beeper-port touch-port][const beeper touch1]     ;was b3
        [const button-port porta][const button 2]               ;was a4
        [const ee-port porta][const sck 3][const sdat 4]      ;was a2,a3
        [const motor-port portb]
          [const motora-l 5][const motora-r 4]                  ;was b5,b6
          [const motorb-l 3][const motorb-r 7]                  ;was b7,b7
        [const bus-port portb][const bus-port-ddr [sum :bus-port $80]]
          [const bus 2][const bus2 6]                           ;was b2,b4

        ;Mode = button (was for testing, may well stay this way)
                ;tie high for normal operation

        ;Capacitive touch sensor
            ;touch1 = beeper (for testing, but shouldn't interfere)

        [const pad-direct-port touch-port][const pad-direct touch1]
        [const pad-resistor-port touch-port] [const pad-resistor touch2]
•
•
•
;;;;;;;;;;;;;;;;;;;;;
; Main loop
;;;;;;;;;;;;;;;;;;;;;

start   [bsr io-init]
        [bsr read-autostart] 
        [btsc autostart bits][bsr run-startup1]
        [bsr greeting][bclr autostart bits]
        [ldan $01] [bsr bus-tyo]        ; broadcast reset message on bus
•
•
•
        [bra prim-eb][bra prim-db]
        [bra prim-new2?][bra prim-bus2][bra prim-reply2]

        [bra prim-aset2][bra prim-aget2]
        [bra prim-set-touch-range][bra prim-touch-range]
•
•
•
prim-beep
        [bsr beep]
        [bra switch]

beep    [ldan aon-mask][xorm motors]    ;visible        
        [ldan 35][sta t0]       ; so beep to show it
bp20    [bset beeper beeper-port]
        [bsr delay-loop]
        [bclr beeper beeper-port]
        [bsr delay-loop]
        [decsz t0]
        [bra bp20]
        [ldan aon-mask][xorm motors]                    
        [rts]
        
prim-note
        [bsr pop-byte][sta t0]
        [bsr pop-byte][sta t1]
        [bsr note]
        [bra switch]

greeting                        ;visible assumes motors off
        [ldan 20][sta t1] [ldan 1][sta t0]
        [bset motora-r motor-port]      ;yellow         
        [bsr note]
        [bclr motora-r motor-port]                      
        [ldan 250][bsr delay-loop]
        [ldan 15][sta t1] [ldan 1][sta t0]      
        [bset motora-l motor-port]      ;orange+green   
        [bset motorb-l motor-port]                      
        [bsr note]
        [bclr motora-l motor-port]                      
        [bclr motorb-l motor-port]                      
        [rts]

;alarm  [ldan 21][sta t1] [ldan 2] [sta t0]
note    [lda ticksl][addn 100][sta r0l]         ;was label nt20
nt30    [bset beeper beeper-port]
        [bsr note-delay]
        [bclr beeper beeper-port]
        [bsr note-delay]
        [lda ticksl][sub r0l][andn $f0]
        [btss z status][bra nt30]
        [decsz t0][bra note]
        [rts]
•
•
•

prim-aset2
        [bsr pop-r0]
        [bsr pop-array-addr]
        [ldan num1h][sta @@]
        [ldan ee-select-mask] [xorm dbits]      
        [lda r0h] [bsr ee-write-and-delay]
        [lda r0l] [bsr ee-write-and-delay]
        [ldan ee-select-mask] [xorm dbits]      
        [bra switch]

prim-aget2
        [bsr pop-array-addr]
        [ldan num1h][sta @@]
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        [ldan ee-select-mask] [xorm dbits]      
        [bsr ee-read][sta r0h]
        [bsr ee-read][sta r0l]
        [ldan ee-select-mask] [xorm dbits]      
        [bra return-r0]
•
•
•
prim-set-touch-range
        [bsr pop-byte]
        [sta t0]
        [bclr touch-range1 dbits]
        [bclr touch-range0 dbits]
        [btsc 1 t0] [bset touch-range1 dbits]
        [btsc 0 t0] [bset touch-range0 dbits]
        [bra switch]

prim-touch-range
        [clr r0h] [clr r0l]
        [btsc touch-range1 dbits] [bset 1 r0l]
        [btsc touch-range0 dbits] [bset 0 r0l]
        [bra return-r0]

prim-switchb
prim-sensorb
        [bra return-false]      ; false = 0

prim-switcha
        [bsr get-sensor]
        [bra return-false-if-small]

prim-sensora
        [bsr get-sensor]
        [bra return-r0] 

;Parameters (delay=2 and n-measurements=30 worked well with cutoff of 50 in bus device)
        [const delay 2]
        [const n-measurements 32]                                               

;Temp variables
        [const integral t0]             ;alias to existing blue-dot temps
        [const counter t1]

get-sensor
gsinit  [bclr gie intcon]                       ;interrupts off         
        [clra][sta integral]
        [ldan n-measurements]                   ;loop counter           
        [sta counter]
        [btss touch-range1 dbits][bra gsinit2]  ; prescale counter      
        [ror counter][ror counter]              ; X1=1: div by 4        
gsinit2 [btsc touch-range0 dbits][ror counter]  ; X0=1: div by 2        
        
measurement-loop        
init-up [bclr pad-direct pad-direct-port]               ;discharge the pad
        [bsr bang-mode]                                 ;(when enabled)
        
        [bset pad-resistor pad-resistor-port]   ;pull resistor high (when enabled)

        [bset bank2 status]                     ;"measure-mode"
        [bset pad-direct pad-direct-port]       ;set direct to input
        [bclr pad-resistor pad-resistor-port]   ;set resistor to output
        [bclr bank2 status]

cnt-up  [ldan delay][bsr delay-loop]            ;delay 4us * delay      
        [btsc pad-direct pad-direct-port][bra init-dn]  ;bra if above cmos threshhold
        [incsz integral]                        ;if wrapped to 0 -> overflow
        [bra cnt-up]

        
oflow1  [ldan 255][bra return-a]
        
init-dn [bset pad-direct pad-direct-port]       ;charge the pad
        [bsr bang-mode]                         ;(when enabled)
        
        [bclr pad-resistor pad-resistor-port]   ;pull resistor low (when enabled)

        [bset bank2 status]                     ;"measure-mode"
        [bset pad-direct pad-direct-port]       ;set direct to input
        [bclr pad-resistor pad-resistor-port]   ;set resistor to "output"
        [bclr bank2 status]                     ;(i.e. sink to ground)
        
cnt-dn  [ldan delay][bsr delay-loop]            ;delay 4us * delay      
        [btss pad-direct pad-direct-port][bra end-cycle];bra if below cmos threshhold
        [incsz integral]                        ;if wrapped to 0 -> overflow
        [bra cnt-dn]
        
oflow2  [ldan 255][bra return-a]
        
end-cycle
        [decsz counter]
        [bra measurement-loop]
        
end-measurement
        [lda integral]
return-a        
        [bclr pad-direct pad-direct-port]       ;discharge the pad
        [bsr bang-mode]                         ;(when enabled) 
        [sta r0l]
        [clr r0h]
        [bset gie intcon]                       ;interrupts back on     
        [rts]                                   ;touch1/beeper left as output

bang-mode
        [bset bank2 status]
        [bset pad-resistor pad-resistor-port]   ;tristate resistor
        [bclr pad-direct pad-direct-port]       ;set direct to output
        [bclr bank2 status]
        [rts]
•
•
•
;;;;;;;;;;;;;
;;; "Slave" bus port

prim-new2?
        [btss bus2f dbits]
        [bra return-false]
        [bclr bus2f dbits]      ;clear flag
        [bra return-true]

prim-bus2
        [clr r0h]
        [btsc bus2bit9 dbits][bset 0 r0h]       ;set the 9th bit of r0
        [lda bus2-data][sta r0l]
        [bra return-r0]

prim-reply2
        [bsr pop-r0]
        [lda r0l]
        [bsr bus2-tyo]
        [ldan 60][bsr delay-loop]
        [bra eval]

; send a byte down the bus. the "stop" bit is always 0
; of a data byte
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; input in a
bus2-tyo[sta t0]
        [bclr gie intcon]       ;interrupts off
        [ldan bus-port-ddr][sta @@]
        [bclr bus2 bus-port][bclr bus2 @]       ;configure bus2 port as output
        [ldan 24][bsr delay-loop] ; give receiver a chance to sync (about 100us)
        [bset bus2 bus-port]            ; start bit
        [ldan 8][sta t1]
        [bsr an2-rts][nop][nop]
b2tyo50 [ror t0]                ; bit -> carry
        [bclr bus2 bus-port]
        [btsc c status]
        [bset bus2 bus-port]
        [nop][nop][nop]
        [decsz t1]
        [bra b2tyo50]
        [nop][nop]
        [bset bus2 @]           ;re-configure bus2 port as input
        [bset gie intcon]       ;interrupts back on
        [rts]
•
•
•
;;;;;;;;;;;;;;;;;;;;;;;
; eeprom 
;;;;;;;;;;;;;;;;;;;;;;;

; i^2c protocol
; see the data sheet for details

fetch   [ldan iph][sta @@]
; read a byte from the eeprom
; @@ should have a pointer to the address
; result in a
ee-read [bsr ee-addr-match?]            ; can we skip the write cmnd?
        [btsc z status][bra eer30]      
        [dec @@]                        ; back to the high word
        [bsr ee-start]                  ; send a start bit
        [ldan $a0]
        [btsc ee-select dbits][orn $02] ; maybe select i2c address 1
        [bsr ee-send]           ; send write command (to set addr)
        [lda @][bsr ee-send]            ; then addr high
        [inc @@][lda @][bsr ee-send]    ; then addr low
eer30   [bsr ee-start]           
        [ldan $a1]
        [btsc ee-select dbits][orn $02] ; maybe select i2c address 1  
        [bsr ee-send]                   ; send current addr read command
        [bset bank2 status]
        [bset sdat ee-port]             ; data pin to input
        [bclr bank2 status]
        [bsr eein1][bsr eein1][bsr eein1][bsr eein1]
        [bsr eein1][bsr eein1][bsr eein1][bsr eein1]
        [bset bank2 status]
        [bclr sdat ee-port]             ; data pin back to output
        [bclr bank2 status]
        [bclr sck ee-port]
        [bset sdat ee-port]             ; send a nack
        [bset sck ee-port]
        [bsr ee-stop]
        [bsr inc-ee-addr]
        [lda ee-data]
        [rts]
•
•
•
; write a byte to the ee-prom
; @@ contains a pointer to the addr

; ee-data has the data
ee-write[bsr ee-start]
        [ldan $a0]
        [btsc ee-select dbits][orn $02] ; maybe select i2c address 1 
        [bsr ee-send]                   ; send write command
        [lda @][bsr ee-send]            ; then addr high
        [inc @@][lda @][bsr ee-send]    ; then addr low
        [lda ee-data][bsr ee-send]      ; then the data
        [bsr ee-stop]
inc-ee-addr
        [linc @][sta @][sta ee-addrl]   ; inc the low word 
        [decsz @@]                      ; point back to the high word
        [btsc z status][inc @]          ; propogate carry
        [lda @][sta ee-addrh]           ; keep a copy of the pointer
        [rts]
•
•
•
;;;;;;;;;;;;;;;;;;;;;;;
; interupt handlers
;;;;;;;;;;;;;;;;;;;;;;;

; dispatched to either a timer int or an ir int
int-routine
        [sta int-a]
        [lda status]
        [bclr bank2 status]     ; who knows what state it was in...
        [sta int-status]
        [btsc intf intcon][bra int-ir]
        [btsc rbif intcon][bra int-bus2]

•
•
•
; after we receive a high-to-low transition on the bus2 port
; we block, wait low-to-high transition, and receive 9 bits of bus data
; return result in bus2-data    [Note: no timeout provisions]
int-bus2
        [bclr rbif intcon]
        [btsc bus2 bus-port][bra iret]  ;ignore low-to-high transitions
        [bsr bus2-tyi]
        [bset bus2bit9 dbits]
        [btss c status][bclr bus2bit9 dbits]
        ;[lda bus2-shift][sta bus2-data]   ;no need for double-buffer so just alias
        [bset bus2f dbits]
        [bclr rbif intcon]              ;does this prevent endless interrupts?
        [bra iret]

; return a byte in bus2-shift
; also return the inverse of the stop bit in the carry
; commands have a 0 stop bit -> carry set
; data has a 1 stop bit -> carry clear
bus2-tyi;[btsc bus2 bus-port][bra bus2-tyi]     ; already taken care of by int handler
b2tyi20 [btss bus2 bus-port][bra b2tyi20]       ; wait for sync edge
        [ldan 8][sta bus2-count]
        [nop][nop][nop][nop]    ;was [bsr an2-rts] ;(4 cycles, right?)
b2tyi30 [nop][nop][nop]
        [ror bus2-shift]
        [bclr 7 bus2-shift]
        [btsc bus2 bus-port]
        [bset 7 bus2-shift]
        [decsz bus2-count]
        [bra b2tyi30]
        [nop][nop][nop][nop][nop]       ;was [bsr an2-rts][nop]
        [bset c status]
        [btsc bus2 bus-port][bclr c status]     ; no stop bit -> carry clear
an2-rts [rts]
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•
•
•
; set z on a button transition
; the button and the run light share a pin 
button-edge?
        [bclr z status]
        [btsc autostart bits][bra be50] ; no stopping on autostart
        [btsc but bits][bset z status]  ;old but -> z
;       [bset bank2 status]
;       [bset button button-port]       ; switch to input
;       [bclr bank2 status]
        [bclr but bits][btsc button button-port][bset but bits] ; button -> but
        [btss run-light bits][bra be170] ; is not running, keep it as an input
be50    [bclr button button-port]
;       [bset bank2 status]
;       [bclr button button-port]       ; back to output if run light on
;       [bclr bank2 status]
be170   [btsc but bits]
        [bclr z status]
        [rts]
        
; set up the pins and initialize some ram variables
io-init [ldan 7][sta adcon]             ; *** only for 622 ***
        [bset bank2 status]
        [bclr motora-l motor-port][bclr motora-r motor-port]
        [bclr motorb-l motor-port][bclr motorb-r motor-port]
        [bclr ir-out ir-out-port]
        [bclr sck ee-port][bclr sdat ee-port]
        [bclr beeper beeper-port] 
        [ldan $83][sta option]  ; set timer to / 16 = 250 hz
;       [ldan 2] [sta adcon1]    ; set ra0,ra1 to analog, ra2,ra3 to digital   
        [ldan $3] [sta adcon1]    ; set ra0,ra1,ra2,ra3 to digital
        [bclr bank2 status]
        [bclr ir-out ir-out-port]       ; leave ir led off
        [clr bits][clr wait-counterh]
        [clr motors][clr dbits]
        [ldan ee-default][orn 0]       ;If ee-default=1
        [btsc z status][bra init20]   ;Set default ee bank to 1 (else 0)
        [ldan ee-select-mask] [xorm dbits]    ;(this should really be an #if)
init20  [clr ticksl][clr ticksh]
        [bclr motora-l motor-port][bclr motora-r motor-port]
        [bclr motorb-l motor-port][bclr motorb-r motor-port]
        [ldan $ff] [sta aspeed] [sta bspeed]
        [bset awho motors] [bset bwho motors]
        [bset inte intcon]
        [bset rbie intcon]      ;New: enable interrupt on portb change
        [bset t0ie intcon]
        [bset gie intcon]
        [rts]


