
LEARNING AND COMMON SENSE SECTION TECHNICAL REPORT 96-01, APRIL 1996

Figure 1. Examples of faces and
expressions generated in ToonFace.

ToonFace: A System for Creating and

Animating Interactive Cartoon Faces

Kristinn R. Th�risson

Gesture and Narrative Language Group, Media Laboratory
Massachusetts Institute of Technology

20 Ames Street E15-410N Cambridge MA 02139
http://www.media.mit.edu/~kris

kris@media.mit.edu

Abstract. The majority of facial animation work has focused on realistic rendering, often with
complex underlying models of muscles and sometimes of facial tissue. A system for facial
animation is described that takes a simpler, more artistic aproach. A face animated in this system
is an effective vehicle for emotional and communicative expression. The scheme emplyed divides
the face into seven features, each with a specific number of control points. Control points are
moved with one- and two-dimensional Òmotors.Ó Three kinds of filled polygons can be used to
define areas and lines in the face. The simplest kind is a static, non-animated polygon, the second
kind is associated with a whole feature (and all its control points), the third kind is simply
associated with a single control point. As the control points are moved, either in one or two
dimensions, the shape and position of animated polygons is modified to conform to the change,
and thus change the facial expression. To achieve this, two kinds of interpolations are used. A
face in this system is semi-3-D: it is defined in a 2-D plane that can be turned in three dimensions
to simulate head turning and nodding. The result is a flexible system that can generate a range of
facial expressions. The system comes in two parts, one being an Editor for constructing faces, the
other being an animation engine for animating a face in real-time.

Keywords: Facial animation, caricature, real-time interaction, agents, human-computer interation.

1. INTRODUCTION

While computer graphics work concerned with faces has to date

focused extensively on visual appearance, interactivity and

effectiveness for information transmission via the face has not been of

primary concern. The motivation for the current work comes from an

interest in the social metaphor for human-computer communication

where one or more synthetic characters, often referred to as Òagents,Ó

take the role of a participant in a face-to-face conversation [Th�risson

1994b, Nagao & Takeuchi 1994, Th�risson 1993, Laurel 1990]. As

the modes of speech, gesture and gaze become a routine part of the

computer interface [Koons et al. 1993, Bolt & Herranz 1992, Bolt

ToonFace: A SYSTEM FOR CREATING AND ANIMATING INTERACTIVE CARTOON FACES LEARNING AND COMMON SENSE SECTION TECHNICAL REPORT 96-01 2

Figure 2. Seven objects comprise the
animated parts of the face: Two eye

brows, eyes and pupils, and one mouth.
Control points (shown as dots) can be

positioned anywhere within the face, by
selecting and moving them with the

mouse.

1980, Mochizuki et al. 1992, Th�risson et al. 1992, Britton 1991,

Neal & Shapiro 1991, Tyler et al. 1991] the demand increases for

effective facial displays on the computerÕs side that can facilitate such

multi-modal interaction.

Making facial computer animation look convincing has

proven to be a difficult task. A common limitation of physically-

modeled faces [Essa 1995, Essa et al. 1994, Waters 1990, Takeuchi

& Nagao 1993, Waite 1989] is that the meaning of their expressions

is often vague. An ideal solution to this would be to exaggerate

facial expression, but within a physical modeling framework this

may look unconvincing or awkward. An alternative is what might be called a ÒcaricatureÓ approach [Th�risson

1993, 1994a, 1994b, Britton 1991, Laurel 1990] where details in the face are minimized and the important features

therefore exaggerated (see Hamm [1967] for an excellent discussion on cartooning the head and face). In this fashion,

Brennan [1985] created a system that could automatically generate caricature line-drawings of real people from

examples that had been entered by hand. Librande [1992] describes a system called Xspace that can generate hundreds

of artistically acceptable two-dimensional drawings from a small example base. Simplified faces seem like a very

attractive alternative to physical modeling for animating interface agents, both in terms of computational cost and

expressive power. This report describes a system called ToonFace that uses a simple scheme for generating effective

facial animation along these lines (Figure 1). It differs from prior efforts primarily in its simplicity and its way of

representing facial features. The following section is a more elaborate discussion of the motivation and goals behind

this work. Section 3 describes the particulars of drawing and animation routines, section 4 gives a quick tutorial of

the two parts of ToonFace, the Editor and the Animator. A short user guide follows in section 5 gives a short

comparison between ToonFace and the Facial Action Coding Scheme (FACS, Ekman & Friesen 1978). Lastly,

current applications and future enhancements are described in section 6.

2. MOTIVATION AND GOALS

Most current systems for facial animation are very complex, include between 70 and 80 control parameters [Essa

1995, Essa et al. 1994, Terzopoulos & Waters 1993, Waters & Terzopoulos 1991, Waters 1987] require powerful

computers and seldom run in real-time. There is a clear need for a simple, yet versatile method of animation that

allows for interactive control. ToonFace is an attempt to create such an animation package. The primary goal of

ToonFace is to create facial expressions in real time in response to a human interacting with it. ToonFace meets

this requirement by being simple: mostly two-dimensional graphics with five kinds of polygons (three of which are

user-definable) and four kinds of polygon manipulations. It employs very simple linear interpolation methods for

achieving the animationÑa clear win under time-constraints. By reducing the degrees of freedom in the movements

of the face to a managable number (21 df), it is easier to control of the face than in most other approaches. A

ToonFace: A SYSTEM FOR CREATING AND ANIMATING INTERACTIVE CARTOON FACES LEARNING AND COMMON SENSE SECTION TECHNICAL REPORT 96-01 3

Brl Brc Brm Blm Blc Bll

Eru Elu

Erl Ell

Pr Pl

MlMr

Mb

Figure 3. Codes used for the
animated control points.

Figure 5. Eye brows have three control points, each
with one degree of freedom in the vertical.

Mr
Mb

Ml

U U

Mr

Ml

Ml

Mb Mb

U

Mr

Figure 6. The mouth has four control points, three
of which actually move. The ones on the sides (Ml

& Mr) have two degrees of freedom, the bottom
control point (Mb) has one.

Eu

El
L

R

Figure 4. Each eye has four
control points, but only two of
those move. Upper (Eu) and
lower (El) control points have

one degree of freedom each in
the vertical.

secondary goal of the system is that it meet mininal criteria for graphical

quality and look. The scheme employed allows people to use their own

artistic abilities to create the look that they need for their system.

3. ToonFace ARCHITECTURE

ToonFace consist of two parts, an Editor and an animation engine or

Animator. The Editor allows a user to construct a face within a point-and-

click environment. The Editor runs on

an Apple Macintosh computer in

Macintosh Common Lisp (MCL) [Macintosh Common Lisp Reference 1990,

Steele 1990]. The Animator is a C/C++ program running on an SGI using

OpenGL [Neider et al. 1993] routines for real-time rendering. We will now

look at how a face is represented in ToonFace and the drawing and animation

routines.

3.1 Facial Coding Scheme

A face is divided into seven main features: Two eye brows, two eyes, two

pupils and a mouth. The eye brows have three control points each, the eyes and mouth four and pupils one each

(Figure 2).

Control points that can be animated are given the codes shown in Figure 3. These points were selected to

maximize the expressive/complexity tradeoff (see section 6). In the case of points that can move in two dimensions,

each dimension is denoted as either ÒhÓ for horizontal or ÒvÓ for vertical (Figures 4, 5 & 6). The following is a

complete list of all one-dimensional motors that can be manipulated in a face [control point number in brackets]:

Brl = brow/right/lateral [3]; Brc = brow/right/central [2]; Brm = brow/right/medial [1]
Bll = brow/left/lateral [6]; Blc = brow/left/central [5]; Blm = brow/left/medial [4]
Eru = eye/right/upper [7]; Erl = eye/right/lower [9]
Elu = eye/left/upper [8]; Ell = eye/left/lower [10]
Plh = pupil/right/horizontal [15]; Plv = pupil/left/vert [15]
Prh = pupil/right/horiz [16-h]; Prv = pupil/right/vert [16-v]
Mlh = mouth/left/horizontal [14-h]; Mlv = mouth/left/vertical [14-v]
Mrh = mouth/right/horizontal [13-h]; Mrv = mouth/right/vertical [13-v]
Mb = mouth/bottom [12]
Hh = head/horizontal [17-h]; Hv = head/vertical [17-v]

ToonFace: A SYSTEM FOR CREATING AND ANIMATING INTERACTIVE CARTOON FACES LEARNING AND COMMON SENSE SECTION TECHNICAL REPORT 96-01 4

MAX

MIN

MAX

MIN

MAX

MAX

MAX

MAX

Figure 7 . Limits of control
point movement and direction

of their dimensions.

Figure 8 . Control panel for the
ToonFace Editor (see text). (Pt. Att.

Pol = point attached polygons, Ctrl. Pt.
= control points; Sel. = select).

Figure 9. Free
polygons are used for

objects that don’t
have to move relative

to others, like hats,
hair, nose and ears.

P
Blc

Figure 10. As the central control point on the left
eye brow (Blc) is moved down, the vertices of its

attached polygon (P) are recalculated according to
how the angle of the lines between the control
points changes. The left side shows the control
points of the eye brow with connecting lines, the

right side shows the polygons when filled.

Horizontal motion is coded as 0, vertical

as 1. Each of the motors can move a

control point between a minimum and a

maximum position (for a given

dimension). Thus, max and min values

mark the limits of movement for each

motor. For the eyes and head, these are

given in degrees, (0,0) being straight out

of the screen; upper left quadrant being

(pos, pos), lower left quadrant being (pos,

neg). Figure 7 shows these limits as they appear graphically in the Editor.

A line extends the full range of a control pointÕs path. The limits can be

changed by clicking and dragging the ends of these lines.

3.2 Drawing Scheme: Polygons

As mentioned before, drawing is done by filled, two-dimensional polygons.

There are three kinds of user-manipulable polygons which all can have an

arbitrary number of vertices. A new polygon is created by selecting the desired type from a menu (Figure 8), then

selecting the feature or control point to attach it to (unless it is a free polygon). A polygon is moved by dragging it;

its vertices are changed by dragging them to the desired locations. A new polygon always

has eight vertices, which can be deleted or added to as desired.

Free Polygons.

This is the simplest kind of

polygon in the system. Free

polygons are simply drawn in place

and cannot be animated. They are

used for constructing features that do

not need to move relative to other

features, including hair, ears,

decorations, scars, etc. An example

is given in Figure 9.

Feature-attached Polygons.

These polygons are associated with a whole feature. An

example is a polygon representing an eye brow (Figure 10).

These polygons are animated in relation to the whole

ToonFace: A SYSTEM FOR CREATING AND ANIMATING INTERACTIVE CARTOON FACES LEARNING AND COMMON SENSE SECTION TECHNICAL REPORT 96-01 5

Figure 11. Polygons attached to a single
control point have two defined states (shown in
the upper right with lines connecting common

vertices). As the control point moves (in this
case the bottom mouth point), the vertices of
the polygon are interpolated between the two

pre-defined states.

v

L1

dVrl

h0 h1

I yl

x

y
Bll

Blc

Blm

Left eyebrow
polygon outline

Figure 12. Example of polygon point
interpolation (see text).

feature: if one point in the feature moves, the points on the

polygon closest to that point are recalculated and redrawn: as a

result, the polygon changes shape.

Point-attached Polygons.

A point-attached polygon only changes form/position when a

single control pointÑthe point to which it is attachedÑchanges

position. The user defines two states for the polygons, one

showing how it should look when its control point is at its max

position, the other corresponding to its min value (Figure 11).

When the control point is moved during animation, a linear

interpolation is performed between the polygonÕs two states.

Drawing Order.

For purposes of making features overlap correctly, three kinds of

special-case polygons are used. Hole polygons, pupils and the face polygon. Hole polygons are the insides of the

eyes and mouth. When the face is drawn, the hole polygons are drawn first, then the pupils, then the face polygonÑ

except for the regions defined by the hole polygonsÑthen the free polygons, then point-attached polygons, and lastly

the feature-attached polygons:

STEP
 1. DRAW (HOLE POLYGONS)
 2. DRAW (PUPIL POLYGONS)
 3. DRAW (FACE POLYGON) Ñ (AREAS DEFINED BY HOLE POLYGONS)
 4. DRAW (FREE POLYGONS)
 5. DRAW (POINT-ATTACHED POLYGONS)
 6. DRAW (FEATURE-ATTACHED POLYGONS)

3.3 Interpolation Algorithms

The control points of a faceÕs feature are connected by lines, as shown in figures 4, 5, 6 and 10. These lines are used

to determine how the feature-attached polygonÕs vertices move when any single control point on the feature is

moved. A feature like the left eyebrow has three control

points (Bll, Blc, Blm) which all move in the vertical

dimension. In Figure 12 h0 and h1 are the horizontal

positions of Blm and Blc; the vertical would be {v0, v1}.

From these the slope of L1 is determined:

Sl = (v1 - v0) / (h1 - h0)

The y-intercept of line L1 is given by:

I yl = v0 - (Sl * h0)

The following method is then used to calculate the position

{x,y} of a vertice v on a feature-attacghed polygon P:

ToonFace: A SYSTEM FOR CREATING AND ANIMATING INTERACTIVE CARTOON FACES LEARNING AND COMMON SENSE SECTION TECHNICAL REPORT 96-01 6

P = {v1, v2, v3, ... }
v = {x , y}

x = h0 + (vrl * (h1 - h0))
y = (x * Sl) + I yl + d

where vrl is the relative horizontal position of point v betweeen h0 and h1 (along line L1) and d is the distance of

point v from L1. This is exemplified in Figure 10: When the control point Blc is moved down, vertices on polygon

P move to keep a constant distance to the lines between the control points, resulting in a new shape for the

eyebrow.)

The feature lines are not used for point-attached polygons. These simply have two states, one for the

control pointÕs max position, and another for its min position (Figure 11). The following linear interpolation

method is used to calculate a point-attached polygonÕs vertice (v) value {x,y}:

v = {min-x , min-y, max-x, max-y}

x = vmin-x + (Pctrl * (vmax-x - vmin-x))
y = vmin-y + (Pctrl * (vmax-y - vmin-y))

where Pctrl is the position of the associated control point along its min-max dimension (a float between 0.0 and 1.0).

3.4 Animation Scheduling Algorithms

The Animator part of ToonFace uses a multi-threaded scheduling algorithm to simulate parallel execution of motors.

The main loop has a constant, loop-time, which determines the number of animation frames per second. The value

for this constant should be equal to the maximum time the main loop could ever take to execute one loop. In the

current implementation this constant is set to 100 ms, giving a fixed rate of 10 animation frames per second. When

a command to move multiple motors is received, the total time this action is supposed to take is divided into loop-

time slices. Since all motors are independent from each other, separate slices are made for each motor. So for a

close-left-eye command (i.e. control point Elu) of a 500 ms duration, 5 slices would be made for the left eye, each

slice to be executed on each main-loop. If the eye is fully open when the command is initially recieved, the eye will

be 20% closer to being fully closed on each loop, and fully closed when the last slice has been executed. If a

command for closing both eyes in 500 ms were to be given, a total of 10 slices would initially be produced and each

time through main loop one slice for the left eyelid and one slice for the right eyelid would be executed, bringing

both eyes to a close in 500 ms. If all pending slices have been executed before the 100 ms loop-time constant has

been reached, the program waits the remaining time, thus guaranteeing a constant loop time.

Here is a rough outline of the main loop in pseudo-code:

LOOP FOREVER
Start-Time = read-clock
commands-received = Read Socket Input
IF commands-received

FOR each motor IN commands-received
MAKE-SLICES

FOR each motor
EXECUTE-ONE-SLICE

PAUSE (loop-time Ñ (read-clock Ñ Start-Time))

ToonFace: A SYSTEM FOR CREATING AND ANIMATING INTERACTIVE CARTOON FACES LEARNING AND COMMON SENSE SECTION TECHNICAL REPORT 96-01 7

Figure 8 . Control panel for the
ToonFace Editor (see text). (Pt. Att.

Pol = point attached polygons, Ctrl. Pt.
= control points; Sel. = select).

The faster the rendering, the lower the loop-time constant can be set, resulting in smoother animation. The

value for this constant is most easily chosen by experimentation, since execution time of depends on various factors,

such as number of slices in each loop, amount of commands received per second, etc., whose interactions are difficult

to predict.

It is expected that the program connecting to the ToonFace Animator contain libraries of standard motions,

such as smiling, frowning, neutral appearance, etc. This is a non-trivial issue and will not be discussed here.

4. A QUICK GUIDE TO USING ToonFace 1.0

4.1 The Editor

When ToonFace is loaded in Macintosh Common Lisp [Macintosh Common Lisp Reference 1990, Steele 1990],

two windows open, and a menu appears. A default face (Figure 2) is displayed in the Edit window; controls and

options are displayed in the Controls window (Figure 8). The ToonFace menu item has options for selecting and

creating new windows and for saving faces. The Edit window contains the face being designed. The Control

window, shown in Figure 8, is divided into four regions. At the top (Item Add/Remove) are buttons for adding new

polygons (New Attached Polygon, New Free Poly, New Pt. Att. Polygon), and deleting free polygons (Del. Free

Poly). Free polygons can also be duplicated (Copy Free Poly). Below these buttons are radio buttons that determine

whether points on a polygon are being added, deleted or dragged (Add Points, Delete Points, Drag Points). The

options in the Edit Mode area determine what kind of polygons we are

working with (Hole Polys, Pt. Att. Poly, Sketch), whether we are working

with a fully rendered version of the face and choosing colors for the

polygons (Colors), whether we are moving the faceÕs control points around

(Ctrl. Pts.), or editing the motion ranges of the control points (Ctrl. Pt.

Ranges). In addition, we can use the up- and down-arrow keys on the

keyboard to select free polygons to edit (Sel/Drag Poly) and swap the order

in which they are drawn to make the overlap correctly (Swap Poly Order),

also by using the up- and down-arrow keys on the keyboard. In some

modes help instructions are printed to the Listener window when they are

selected.

The Pupil area allows a user to select polygons or circles as the

pupils, as well as increase and decrease their size. With the ÒmirrorÓ option

checked, everything done with one pupil applies to the other as well. The

ÒControl PointÓ area allows a user to select a control point (select ctrl. pt.)

and move it around with the arrows (move ctrl. pt.). With the ÒFastÓ

option checked, the selected control point moves 5x the normal distance

each time the arrows are clicked. In the ÒColorÓ mode, colors are chosen

ToonFace: A SYSTEM FOR CREATING AND ANIMATING INTERACTIVE CARTOON FACES LEARNING AND COMMON SENSE SECTION TECHNICAL REPORT 96-01 8

Figure 12 . Successive versions of a face as lips (feature-attached
polygons), nose and ears (free polygons), tongue (point-attached
polygon), and eyebrows (feature-attached polygons) are added.

through the standard Macintosh color pop-

up menu by clicking on a polygon; last

selected color can be accessed by pressing

the ÒUse Last ColorÓ button before

clicking on the desired polygon.

As mentioned before, the Editor

allows a user to save a face in two file

formats. One is used for the editor

program itself; this is simply the format

used when an incomplete design is to be stored and read in at a later time for continued editing. It contains Lisp code

that can be evaluated directly in the EditorÕs environmment. These files are designated with the ending Ò.faceÓ. The

other is designated Ò.tfoÓ (ToonFace Object) and can only be read by the Animator.

4.2 The Animator

Once a face has been constructed and saved as a .tfo file, it can be read in by the Animator, which runs on an SGI

Indigo2. The Animator is run by calling ÒTFAnimator name.tfoÓ from the command line, where name.tfo is the

name of a ToonFace Object file. It then asks for a socket number to use, and once this has been given (e.g. 4050),

it waits for a client connection via a standard TCP/IP socket.

The Animator has a defined interface for receiving commands from control programs over the network

connection. Commands take the form

CODE Controlpoint direction abs-pos exec-time

where Controlpoint is the address for a particular motor (a number from 0 to 21), direction is horizontal (= 0) or

vertical (= 0), exec-time is the amount of time, in milliseconds, the motion should take, and abs-pos is the absolute

position that the motor should have moved the control point to when done. CODE is simply a code that tells the

Animator where a record starts (CODE = # for motors and $ for speech). All values are sent over the net in ASCII.

Since typically no more than 5-10 records are sent to the Animator per second, the extra number of bits involved in

sending ASCII (beyond a defined bitstream) is acceptable.

Head turning and nodding is done through control point 17. Just like other control points, the position of

the face when turning is absolute, but here the numbers are given in degrees from center (looking straight out of the

screen): positive to the left and negative to the right; negative down and positive up.

The Animator also allows a face to speak, via a DecTalk speech synthesizer connected to a serial-port.

Speech is coded with a $ at the beginning of the record and replaces abs-pos with a string to be sent to the

synthesizer. The Animator will count the syllables in the string and roughly synchronize the mouth movements

with its auditory presentation.

The ToonFace Animator can be tested manually by doing

>telnet “name-of-machine-running-ToonFace” 4050

ToonFace: A SYSTEM FOR CREATING AND ANIMATING INTERACTIVE CARTOON FACES LEARNING AND COMMON SENSE SECTION TECHNICAL REPORT 96-01 9

>

at the command line after starting up the program, thus manually connecting to the program, and then giving the
command

># 3 1 100 500
>

which should move control point Brl (3), vertically (1), to its maximum position (100) in 500 milliseconds. The

following command will make it speak:

>$ “Hello world”
>

5. THE ToonFace CODING SCHEME: A COMPARISON TO FACS

The Facial Action Coding System (FACS) [Ekman & Friesen 1978] is a system designed for empirical coding of

human facial expressions. The FACS model is based on a simplification of the muscle actions involved in

producing human facial expression, where muscles are grouped together into what the authors call Action Units.

Waite [1989] modeled a human face based on a control structure that incorporates several of the action units described

in Ekman & Friesen [1978]. In her system, the action units are represented by collections of data points which are

covered by a single rendered surface that mimics human skin. The approach taken does not automatically solve how

to draw the eyes, control gaze, or add other decorative features (such as ears or hair) to the rendered face. Because the

system relies on a model of muscles and bone structure, it is computationally intensive. More recently, Takeuchi &

Nagao [1993] describe a system that tries to model a real face in three dimensions based on a similar approach, and

Essa [1995, Essa et al. 1994] describes a computational extension to FACS.

The ToonFace coding scheme is not intended to be a competitor to FACSÑit simply provides a new way

to code facial expressions that requires less detail. Control points were selected to maximize the

expressivity/complexity tradeoff. Compared to prior computer systems based on FACS, ToonFace allows for

animation with more of a cartoon style look. The motivation for the ToonFace control scheme has already been

discussed. However, a comparison to FACS may help the interested reader get a better understanding of the limits

and possibilities of this scheme. It should be noted that since the FACS coding scheme is quite complex, the FACS

Manual [Ekman & Friesen 1978] is recommended for those who wish to seek a thorough understanding of the issue.

ToonFace is a considerable simplification of FACS, but it is precisely for this reason that it is an attractive

alternative. The head motions of humans have three degrees of freedom: head turn, medial (forward-backward) head

tilt , lateral (side to side) head tilt. ToonFace simplifies this into two degrees of freedom, eliminating the lateral

head tilt. For the upper face, the only features that are identical between the two are the eyes, which have 2 df each.

Action unit (AU) 1 (inner brow raiser) and AU 4 (inner brow lowerer) are represented in ToonFace by Bm, with AU

4 approximated by motor Bm having an extended range downward (this depends on the particular face design). AU 2

(outer brow raiser) is approximated by motors Bc and Bl, which also help in capturing motions involving AU 1.

Eu, or Eu and El together, approximates the following AUs: AU 5 (upper lid raiser), AU 7 (lid tightener), AU 41

ToonFace: A SYSTEM FOR CREATING AND ANIMATING INTERACTIVE CARTOON FACES LEARNING AND COMMON SENSE SECTION TECHNICAL REPORT 96-01 10

(lid droop), AU 42 (eye slit), AU 43 (eyes closed), AU 44 (squint), AU 45 (blink), and AU 46 (wink). The only one

left out from the upper face is AU 6, cheek raiser and lid compressor.

For the lower face, AUs 9 (nose wrinkler), 10 (upper lip raiser) and 17 (chin raiser) are not addressed in

ToonFace. Ml represents the motions involving AUs 15 (vertical lip corner depressor), 25 (vertical lips part) and 26

(jaw drop). No differentiation is made between AU 26 and AU 27 (vertical mouth stretch), since the jaw is not

modeled separately from the lower lip. Ml and Mr together can approximate the AUs 20 (horizontal lip stretcher)

and 14 (dimpler), as well as what Ekman and Friesen [1978] call ÒobliqueÓ actionsÑpulling out and up diagonally

on the corners of the mouth.

Of course the ToonFace scheme provides nowhere near an exact match to the action of a human face (for

which even FACS is a simplification), but that is a problem all computer graphics schemes to date have in

common, to various degrees. Where the ToonFace scheme falls especially short is in facial expression involving the

physics of skin contraction and excessive exertion of muscle force, and in the combinatorial explosion possible with

combinations of the numerous action units included in FACS. With patience, a skilled ToonFace designer could

possibly approximate FACS better than indicated here, but that would be going against its design philosophy, which

is simply to get a handful of usable facial expressions relevant to multimodal dialogue, while allowing for a playful

design that doesnÕt get the userÕs expactations up.

6. Applications and Future Enhancements

ToonFace is currently being used as a component in a system the author is building, called Ymir (pronounced e-mir),

which is intended to control the behavior of semi-autonomous computer-enacted characters in real-time interaction

with people. This system employs a library of motor actions that can be triggered from other system components.

The system is optimized for real-time interaction and can thus be used in a number of situations requiring fast

responses. Other planned uses of ToonFace include real-time avatar control over web-based applications and

storytelling agents.

The ToonFace system is primarily a research tool. As such, it is still missing a number of features that

would be desirable and not too difficult to implement. For the Editor, a useful feature would for example be

multiple-level UNDOs, as well as improved user interface layout. Also, adding animation libraries to the Editor

would help a designer envision what a face looks like when it moves. Currently the animator has no user interface

for adjusting such things as background color, size of the face, or window. These would all make the system easier

to use. Looking further along, control points allowing the nose and ears to move would extend the kinds of

creatures that can be designed in the system. A feature that allowed a face to be texture-mapped onto three-

dimensional shapes would of course improve the look of the system quite a bit. The control point scheme described

here is easily applicable to more conventional three-dimensional computer graphics, keeping the simplicity without

compromizing facial expression.

Lastly, an interestingÑand usefulÑaddition would be a mechanism to adjust the faceÕs direction of gaze as

it appears to the viewer; research has shown that factors such as face curvature, pupil placement and screen curvature

ToonFace: A SYSTEM FOR CREATING AND ANIMATING INTERACTIVE CARTOON FACES LEARNING AND COMMON SENSE SECTION TECHNICAL REPORT 96-01 11

interact in determining where a two-dimensional projection of a face seems to be looking, from the observerÕs point

of view [Anstis et al. 1969]. The same would apply to head motion. This is especially important for systems that

track a userÕs line of gaze [Bers 1995a, 1995b, Koons & Th�risson 1993] and thus allow for reciprocal behavior

from the machine.

ToonFace: A SYSTEM FOR CREATING AND ANIMATING INTERACTIVE CARTOON FACES LEARNING AND COMMON SENSE SECTION TECHNICAL REPORT 96-01 12

ACKNOWLEDGMENTS

The author would like to thank Justine Cassell
for making this report possible. The work
described has also benefited from interactions
with Richard A. Bolt and Pattie Maes. Steven
Levis assisted with the implementation of the
ToonFace Editor and the polygon interpolation
methods; Calvin Yuen, Roland Paul, Nimrod
Warshawsky and Hannes H�gni Vilhj�lmsson
helped with implementing, debugging and
improving the ToonFace Animator, making it a
usable tool. Hannes H�gni Vilhj�lmsson, Scott
Provost, Marina Umaschi and Justine Cassell
offered valuable comments on this report.

This research was funded by the Advanced
Research Projects Agency (ARPA) under Rome
Laboratories, contracts F30602-89-C-0022 and
FC30602-92-C-0141, by Thomson-CSF and by
Media Laboratory discretionary funds.

REFERENCES

Anstis, S. M., Mayhew, J. W. & Morley, T. (1969).
The Perception of Where a Face or Television
ÔPortraitÕ is Looking. American Journal of
Psychology, 82, 474-89.

Bers, J. (1995a). A Geometric Model of a UserÕs
Upper Body. M.I.T. Media Laboratory, Advanced
Human Interface Group Technical Report 1-95.

Bers, J. (1995b). Direction Animated Creatures
through Gesture and Speech. MasterÕs Thesis,
Media Arts and Sciences, Massachusetts Institute
of Technology, Media Laboratory.

Bolt, R. A. & Herranz, E. (1992). Giving Directions
to Computers via Speech, Gesture and Gaze.
Proceedings of UIST Ô92.

Bolt, R. A. (1980). "Put-That-There": Voice and
Gesture at the Graphics Interface. Computer
Graphics, 14(3), 262-70.

Brennan, S. (1985). The Caricature Generator.
Leonardo, 18, 170-178.

Britton, B. C. J. (1991). Enhancing Computer-Human
Interaction With Animated Facial Expressions.
Master's Thesis, Massachusetts Institute of
Technology, Cambridge, Massachusetts.

Chin, D. N. (1991). Intelligent Interfaces as Agents.
In J. W. Sullivan & S. W. Tyler (eds.), Intelligent
User Interfaces, 177-206. New York, NY:
Addison-Wesley Publishing Company.

Crowston, K. & Malone, T. W. (1988). Intelligent
Software Agents. Byte, Dec., 267-271.

Ekman, P. & Friesen, W. (1978). Facial Action
Coding System. Palo Alto, CA: Consulting
Psychologists Press.

Essa, I. A. (1995). Analysis, Interpretation and
Synthesis of Facial Expressions. Ph.D. Thesis,
Media Arts and Sciences, Massachusetts Institute
of Technology, February. M.I.T. Media
Laboratory, Perceptual Computing Technical
Report #303.

Essa, I., Darrell, T. & Pentland, A. (1994). Modeling
and Interactive Animaiton of Facial Expression
using Vision. M.I.T. Media Laboratory
Perceptual Computing Section Technical Report
No. 256.

Koons, D. B. & Th�risson, K. R. (1993). Estimating
Direction of Gaze in Multi-Modal Context. Paper
presented at 3CYBERCONFÑThe Third
International Conference on Cyberspace, Austin,
Texas, May 13-14.

Koons, D. B., Sparrell, C. J. & Th�risson, K. R.
(1993). Integrating Simultaneous Input from
Speech, Gaze and Hand Gestures. In M. T.
Maybury (Ed.), Intelligent Multi-Media Interfaces,
252-276. AAAI/MIT Press.

Laurel, B. (1990). Interface agents: Metaphors with
character. In B. Laurel (ed.) The Art of Human-
Computer Interface Design, 355-365. Reading,
MA: Addison-Wesley Publishing Co.

Librande, S. (1992). Example-Based Character
Drawing. MasterÕs Thesis, Massachusetts
Institute of Technology. Cambridge, MA.

Macintosh Common Lisp Reference. Apple
Computer, 1990.

ToonFace: A SYSTEM FOR CREATING AND ANIMATING INTERACTIVE CARTOON FACES LEARNING AND COMMON SENSE SECTION TECHNICAL REPORT 96-01 13

Mochizuki, K., Takemura, H. & Kishino, F. (1992).
Object Manipulation and Layout in a 3-D Virtual
Space Using a Combination of Natural Language
and Hand Pointing. SPIE, Vol. 1828, Sensor
Fusion V, 106-113.

Nagao, K. & Takeuchi, A. (1994). Social Interaction:
Multimodal Conversation with Social Agents.
Sony Computer Science Laboratory technical
report, SCSL-TR-94-005.

Neal, J. G., & Shapiro, S. C. (1991). Intelligent
Multi-Media Interface Technology. In J. W.
Sullivan & S. W. Tyler (eds.), Intelligent User
Interfaces, 11-43. New York: ACM Press,
Addison-Wesley Publishing Company.

Neider, J., Davis, T. & Woo, M. (1993). OpenGL
Programming Guide: The Official Guide to
Learning OpenGL, Relase 1. Reading, MA:
Addison-Wesley Publishing Co.

Steele, G. L. Jr. (1990). Common Lisp the Language,
Second Edition. Cambridge, Massachusetts:
Digital Equipment Corporation.

Takeuchi, A. & Nagao, K. (1993). Communicative
Facial Displays as a New Conversational
Modality. Proceedings of InterCHI, Amsterdam,
April, 187-193.

Terzopoulos, D. & Waters, K. (1993). Analysis and
Synthesis of Facial Image Sequences Using
Physical and Anatomical Models. I E E E
Transactions on Pattern Analysis and Machine
Intelligence, vol 15 (6), 569-579 .

Th�risson, K. R. (1993). Dialogue Control in Social
Interface Agents. InterCHI Adjunct Proceedings,
Amsterdam, April, 139-140.

Th�risson, K. R. (1994a). Face-to-Face
Communication with Computer Agents. AAAI
Spring Symposium on Believable Agents
Working Notes, Stanford University, California,
March 19-20, 86-90.

Th�risson, K. R. (1994b). Computational
Characteristics of Multimodal Dialogue. AAAI
Fall Symposium on Embodied Language and
Action Working Notes, Massachusetts Institute of
Technology, November, 102-108.

Th�risson, K. R., Koons, D. B. & Bolt, R. A. (1992).
Multi-Modal Natural Dialogue. S I G C H I
Proceedings Ô92, April, 653-4. New York: ACM
Press.

Tyler, S. W., Schlossberg, J. L., & Cook, L. K.
(1991). CHORIS: An Intelligent Interface
Architecture for Multimodal Interaction. In AAAI
'91 Workshop Notes, 99-106.

Waite, C. T. (1989). The facial action control editor,
FACE: A parametric facial expression editor for
computer generated animation. MasterÕs Thesis,
Media Arts and Sciences, Massachusetts Institute
of Technology.

Waters, K. & Terzopoulos, D. (1991). Modelling and
Animating Faces using Scanned Data. Journal of
Visualization and Computer Animation, vol. 2,
123-128.

Waters, K. (1987). A Muscle Model for Animating
Three-Dimensional Facial Expression. Computer
Graphics, vol. 21 (4), 17-24.

