Universita di Camerino

1336

4
ik ywd

Reykjavik University University of Camerino
DEPARTMENT OF SCHOOL OF SCIENCE
COMPUTER SCIENCE AND TECHNOLOGY

Master of Science in Computer Science

Towards a Theory of Causally
Grounded Tasks

Candidate Supervisors
Matteo Belenchia Prof. Dr. Kristinn R. Thorisson
Student ID: 110687 Prof. Dr. Emanuela Merelli

AY. 2020/2021

Abstract

Artificial Intelligence systems that need to operate in the physical world require a firm
understanding of causal relationships to efficiently carry out their tasks. At present, few
cognitive architectures, artificial intelligence, or control systems consider causal relationships
between phenomena for achieving goals in the real world, and few if any tests exist to verify
understanding of these relationships in intelligent learners.

The goal of this thesis is to outline a theory of tasks grounded in models of real-time causal
relationships, intended to be used to analyze tasks of varying complexity and build tests for
evaluating the ability of artificial systems to learn, perform, and understand complex real-
world task-environments. Like an engineer can design a bridge with certain physical prop-
erties without actually building it, such a task theory, grounded in physics, should enable
researchers to evaluate and compare tasks and systems without having to resort physical
experiments.

Historically, research on the principles of tasks has been scarce, and causal relationships
have never been a primary focus in those attempts. Few tests of causal understanding have
been proposed thus far and the lack of a proper theory of tasks limits their utility. No compre-
hensive theory of tasks exists. We envision that such a theory would enable comparison of
similar and different asks, calculation of task difficulty for particular learners, and prescriptive
ways for modifying existing tasks to make them more tractable for particular performers and
environments. Comparison of tasks would be invaluable when evaluating and considering
the pros and cons of various approaches to Al systems and learners.

We base our theory of tasks on previous work on causal analysis and cumulative learning,
proposing a method for computing complexity and comparability using causal interpretation
of directed acyclic graphs (DAGs). The theory allows tasks to be analyzed along different
dimensions and can be composed and decomposed into subgoals. It is intended to be used for
evaluating and testing intelligent agents in various ways.

Keywords: Tasks, Environments, Task theory, Causality, Artificial Intelligence, General Machine
Intelligence

Contents

1 Introduction

2

3

1.1 Artificial Intelligence and the quest for Generality
1.2 WhatisaTask Theory?
1.3 Historicalnotes L
Background
2.1 Bi-directionalmodels L L
2.2 ATheory of Understanding
23 Causality
23.1 Causaldiagrams
2.3.2 Representing time in causal diagrams
2.3.3 Association and correlationo L0000 L
2.3.4 Linking association with causation: the Common Cause Principle . . .
2.3.5 The manipulative approach to causation
23.6 Themini-Turingtest
Task theory
3.1 An extension of structural causal diagrams,
3.1.1 Variable attributes o L L Lo
3.1.2 Time, energy and other resources
313 Example
314 Thecart-poletask
3.2 Principles foratasktheory L
3.3 Intricacy
3.3.1 Some properties of intricacy L.
3.4 Difficulty

3.4.1 Task execution phases: Learning & doing
3.4.2 Difficulty factors in the learning phase
3.43 Difficulty factors in the performing phase

12
13
14
16

Contents Contents

3.5 Decompositionoftasks oo 51
3.6 Composition and sequencing of tasks L. 51
3.7 Learningasatask L L 52
4 Conclusion 53
4.1 Testing e 53
4.2 Connections with Constructor Theory 54
43 Criticisms 56
44 Future work and openissues 57
45 Finalremarks 57

Listings

2.1
2.2
2.3
2.4

Firing squad example innarsese 31
Q1: The Court order was given, what is the status of the prisoner? 31
Q2: The prisoner is alive, was the Court order given? 31
Q3: Soldier A fired, did Soldier Bfire? 32

List of Figures

2.1
2.2
2.3

3.1

3.2
3.3

3.4

3.5

Causal diagram of the firing squad scenario.
Causal diagram of the firing squad scenario after setting A =1.

Causal diagram explaining the correlation of ice cream sales I with the crime
rate C through the confounding factor W.

An example of summary graph representing a task. Blue nodes represent the
manipulatable variables, green nodes the observables and red nodes the goal
variables. All other nodes are factors.
A schematic of the cart-pole task (Krishnavedala, 2012).
Summary graph of the cart-pole task. Note that cycles are allowed in summary
graphs, but the corresponding full-time graph is acyclic.
Full-time graph of the cart-pole task. To avoid unnecessary clutter, the ob-
servable variables are shown as smaller circles inside the variable node they
Observe.
An example where (a) the sensors are able to provide observables for all the
variables and (b) the sensors are unable to provide observables for all the vari-
ables. . . . L

Acronyms

AERA Autocatalytic Endogenous Reflective Architecture
AGI Artificial General Intelligence

Al Artificial Intelligence

AIKR Assumption of Insufficient Knowledge and Resources
DAG Directed Acyclic Graph

GMI General Machine Intelligence

NARS Non-Axiomatic Reasoning System

SCM Structural Causal Model

Glossary

Agent An agentis an embodied system consisting of a controller (the mind) and a body. The
body is the agent’s interface to the world which allows the perception of the external
environment, through the flow of data from the body’s sensors to the controller, and
the execution of atomic actions, by means of the commands sent from the controller to
the body’s actuators. The body contains two lists of variables that the controller can
read and write to: B = (Vg, V). Since the body is a physical entity, its sensors and
actuators are physical objects in the world as well and are treated as such (Thérisson,
Bieger, et al., 2016).

Environment An environment is a view of a world. The body of an agent is considered
to be part of it. (Thorisson, Bieger, et al., 2016).

Failure A failure state is an undesirable, possibly partial, state that the agent should avoid
(Thoérisson, Bieger, et al., 2016).

Goal A goalstate is a desirable, possibly partial, state that the agent should reach (Thérisson,
Bieger, et al., 2016).

Phenomenon A phenomenon (process, state of affairs, occurrence) ¢, where W is the
world and & C W, is composed of a set of elements {¢1, @2, ..., p, € P} of various
kinds including relations JRg that couple elements of ¢ with each other and with those
of other phenomena. The elements that a phenomenon is made up of can be any sub-
division of &, including sub-structures, causal relations, whole-part relations and so
on. The relations Mg C 2" x 2 that extend to other phenomena identify the phe-
nomenon’s context. The set of relations can be partitioned in inward facing relations

7 = Re N (2% x 2%) and outward facing relations R = R \ R (Thorisson,
Kremelberg, et al., 2016).

Problem A problem can be atomic or compound. An atomic problem is specified by an
initial state, goal states and failure states. A compound problem can be created by
composition of atomic problems using operators such as conjunction, disjunction and
negation. A problem for which a solution is known to exist is called a closed problem
(Thoérisson, Bieger, et al., 2016).

Problem space The problem space is the set of all valid states of the task.

Glossary Glossary

Solution A solution is a sequence of atomic actions that results in a path through the state

space that reaches all of the goal states and none of the failure states (Thorisson,
Bieger, et al., 2016).

Solution space The solution space is the subset of the problem space defined by the task’s

State

Task

Task-

goals and constraints, made up of all the solution states reachable from any initial state
of the task.

A state can be concrete or partial. A concrete state S is a value assignment to all of
the variables in a task-environment: S = (J,cy{(v, 2y | T, € dy)} A partial state
S~ only assigns values to a subset of the variables. When considering real variables
partial states can be represented using error bounds: S~ = U,cy-{(v,21,2u | 71 <
Zy A (z1,24) C dy)}; this way a partial state covers a set of concrete states. A state is
valid if and only if all invariant relations hold: valid(S) <= V,cr7(S). In practice
the presence of noise and the partial observability of variables makes the use of partial
states more practical than concrete states, therefore by state is always meant a partial
state unless otherwise noted (Thoérisson, Bieger, et al., 2016).

A task is a problem assigned to an agent, T = (Sy, Gtop, Gsus, G, B, tgo, tstop, I),
where Sy is the set of permissible initial states, Gtop is the task’s set of top-level goals,
Gsup is the set of given sub-goals, G~ is its set of constraints, B is a controller’s body,
and t refers to the permissible start and stop times of the task. An assigned task will
have all its variables bound and reference an agency that is to perform it (accepted
assignments having their own timestamp #445;¢-). This assignment includes the manner
in which the task is communicated to the agent, for example if the agent is given a
description of the task a priori, receives additional hints or if it only gets incremental
reinforcement signals as certain states are reached. A task is performed successfully
when the world’s history contains a path of states that solved the problem (Thérisson,
Bieger, et al., 2016).

Environment By task-environment is meant the tuple of a task and the environ-
ment in which it is to be performed. The separation of a task from its environment is
not always clear and somewhat arbitrary, therefore the term task-environment is used
to encompass all the relevant aspects of both (Thorisson, Bieger, et al., 2016; Bieger and
Thorisson, 2017).

World A world WV is a interactive system consisting of a set of variables V', dynamics func-

tions F', an initial state Sy, domains D of possible clusters of particular constraints on
their values, and a set of relations between the variables R: W = (V, F, Sy, D, R).
The variables V' = {v1,va, ...,y } represent anything that may change or hold a
particular value in the world. The dynamics functions act as the laws of nature in the
world and as a whole can be seen as an automatically executed function that periodi-
cally or continually evolves the world’s current state into the next: Si15 = F(S;). In
practice it is useful to the decompose the dynamics into a set of transition functions:
F = {f1, f2y..., fn} where f; : ST — S~ and S~ is a partial state. The domains
d, € D specify which values each variable v can take, and for physical domains these
are usually subsets of real numbers. The relations are Boolean functions over variables
that hold true in any state the world will ever find itself in. If the world is a closed system
with no outside interference, the domains and relations are implicitly fully determined
by the dynamics functions and the initial state. In an open system where changes can

Glossary Glossary

be caused externally, instead, the explicit definition of domains and invariant relations
can restrict the range of possible interactions (Thorisson, Bieger, et al., 2016).

10

Nomenclature

Random variable

Value of a random variable
Vector

Conditional distribution
Intervention distribution

Counterfactual distribution

11

CHAPTER 1

Introduction

The purpose of an Al system is to execute tasks, in particular in the physical world. The con-
cept of task is thus fundamental for Artificial Intelligence as tasks are necessary for training
and evaluation of intelligent systems. Tasks are important both for narrow Al systems, which
are built to carry out the single task they have been designed for, and general Al systems,
which deal with a wide range of tasks, unknown at design time. Unlike other engineering
fields, little work has been done to derive a task theory for Al, a theory which can be used to
specify properties of tasks, compare tasks, estimate resource requirements for their solution
and compose/decompose them, to mention a few (Thoérisson, Bieger, et al., 2016).

The lack of a task theory has made the comparison of different Al systems largely imprac-
tical; such comparisons are costly and difficult to perform and rarely carried out at all. When
Al systems are evaluated, it is often on a task tailored for the specific system. While this
situation might work out for narrow-Al systems, such is not the case for GMI research: AGI-
aspiring systems need to be designed and tested on a wide range of task-environments, and
domain knowledge or psychometric tests such as 1.Q. tests, the Lovelace test (Riedl, 2014) or
the Turing test (Turing, 1950) don’t nearly cover the breadth of situations these systems will
find themselves in. For the purpose of moving towards AGI, a task theory that allows the
analysis and comparison of tasks along the relevant axes is thus required.

This thesis is a first step in that direction: to approach the definition of a task theory, we try
to focus on causal relationships, which are of fundamental importance to get things done in
the real world, and therefore are of primary interest for embodied AGI-aspiring systems. On
the topic of causality, we refer to Turing award winner Judea Pearl’s work on graphical causal
diagrams and structural causal models for causal analysis in statistics (Pearl, 1988; Pearl, 2009;
Pearl and Bareinboim, 2014).

The thesis is structured in four chapters:

1. In Chapter 1, we present the field of Artificial Intelligence, we describe what we mean by
task theory, what are its uses and requirements, and we conclude with a brief historical
overview of its development;

2. In Chapter 2, we present the necessary background notions required for the following
chapters: bi-directional causal-relational models (Thorisson and Talbot, 2018a; Thoris-
son and Talbot, 2018b), understanding (Thorisson, Kremelberg, et al., 2016; Bieger and

12

Chapter 1. Introduction Artificial Intelligence and the quest for Generality

Thérisson, 2017) and causality (Pearl, 2009).

3. In Chapter 3, lays the novelty of this thesis: most importantly we describe an extension
of causal diagrams to allow their use to describe tasks, we set forth the foundational
principles for moving towards a task theory, we define a measure of a task’s “compli-
catedness” that only takes the task’s physics into account and we define a measure of
difficulty of a task’s execution for a specific performing controller.

4. In Chapter 4, we conclude our work by pointing out some approaches to test the theory,
trace a tentative connection to Constructor Theory (Deutsch, 2013), respond to a few
criticisms that were raised against our work and lastly we give some pointers for future
work and the issues left to address.

1.1 Artificial Intelligence and the quest for Generality

Artificial Intelligence (Al) is the field dedicated to the design and development of systems
that can perform tasks requiring some degree of ‘intelligence’. Intelligence is a natural phe-
nomenon, which is most commonly associated with human minds but is also a characteristic
of many animals (Thérisson, 2020b). Intelligence can be defined in many ways, but the defi-
nition we would like to refer to for this work is the one given by Legg and Hutter (2007):

“Intelligence measures an agent’s ability to achieve goals in a wide range of en-
vironments.” (Legg and Hutter, 2007)

This definition of intelligence already implies that there is some association between the in-
telligence of a system and its generality: an agent that can achieve more goals in more envi-
ronments is intuitively more intelligent than an agent with a narrower horizon of use. The
goal of artificial general intelligence (AGI) is to develop systems that can “learn to perform
multiple a-priory unknown tasks in multiple unknown environment” (Nivel, Thoérisson, et
al., 2013, p. 3)!. In contrast, most intelligent systems today (e.g. machine learning and deep
learning systems) are limited to a single, pre-defined task in an unchanging, pre-defined fixed
environment (Nivel, Thorisson, et al., 2013). A step further is taken by Wang (2019), where
the emphasis of general intelligence is on the handling of novelty and “figuring things out”
(Thoérisson, 2020a):

“Intelligence is the capacity of an information-processing system to adapt to its environ-
ment while operating with insufficient knowledge and resources” (Wang, 2019, p. 17)
Given that even room temperature controllers “achieve goals in a wide range of situations,”
Wang’s definition more robustly differentiates general intelligence — the kind we normally
associate with the concept — from other controllers and processes that might also qualify.
However, given how recent his definition (in spite of tracing its roots to 1996) is, it is not yet
widely accepted.

In Artificial Intelligence it is possible to talk about three different types of controllers and
agents agent architectures: reactive, predictive and reflective architectures.

Reactive agents Reactive agents only respond to the perceived sensory information from
the environment, obtained through their sensors. Their architecture is mostly fixed through

'In other words, agents with human-level intelligence, as humans are the only known beings possessing this
kind of intelligence.

13

Chapter 1. Introduction What is a Task Theory?

their lifetime, and while learning is possible the agent only ever reacts to stimuli and is in-
capable of proactive behavior?. Most Al architectures are reactive, and examples of this type
of systems span the very simple thermostats to the complex control systems of power plants.
These types of systems are limited in the sense that they are built with an embedded model
of the task they carry out which is unchangeable, bar the customization of a few parameters
during run-time (Thérisson, 2020c).

Predictive agents Predictive agents are able to anticipate environment states and act in an-
ticipation of sensory information. Their architecture is mostly fixed as in the case of reactive
agents, but by means of predictive models they are able to act in a proactive, goal-oriented
mode. Predictive agents also incorporate reactive control to achieve a more robust behavior.
In particular, predictive agents are able to perform tasks which involve phenomena happening
faster than the action-perception loop of the system. This type of agents, endowed with the
capabilities of creating, selecting and evaluating models has the potential to be a truly general
learner and also carries the potential to improve its own learning mechanism by modelling
the learning itself (Thérisson, 2020b).

Reflective agents Reflective agents go a step beyond predictive architectures by enabling
the agent to modify its own architecture (thus exhibiting cognitive growth) through introspec-
tion and meta-reasoning (Thorisson, 2020b). Two promiment examples of reflective agents
are the Non-Axiomatic Reasoning System (Wang, 2004) and the Auto-catalytic Endogenous
Reflective Architecture (Nivel, Thorisson, et al.,, 2013), both of which aspire to be generally
intelligent systems.

1.2 What is a Task Theory?

As Thorisson, Bieger, et al. (2016) relate, tasks are of primary importance for Artificial Intel-
ligence research. Al systems are built to perform tasks, some of them designed specifically to
perform a single task, or a restricted set of very similar ones, while other systems are built to
be able to perform a large set of tasks unknown during their design, or even any task.

Not only are tasks at center of stage during the design of AI systems, but they are also
prominent during training and evaluation of Al But despite their importance, and unlike
other engineering fields, there is no general theory about the properties of tasks. In any other
field of engineering it is possible to tune tasks for the effective evaluation of artifacts, use
task parameters to guide their design and compose test batteries for thorough evaluation of
their capabilities from their usual environment to their technical boundaries, among other
things. On the other hand, in the field of Al, the lack of a task theory resulted in using
extensive domain knowledge to guide the design of narrow-Al systems and the use of results
from human psychology for evaluation, in this latter case with very underwhelming results.
Furthermore, for the development, training and evaluation of generally intelligent systems,
domain knowledge and tests like e.g. the Turing test or IQ tests don’t nearly cover the breadth
of situations these systems would be facing and a task theory that can model a broad range
of tasks and environment becomes absolutely necessary (Thorisson, Bieger, et al., 2016).

The three main aspects where a task theory would be most useful are, as previously men-
tioned, evaluation, training (also including pedagogy) and design. The Evaluation of Al
systems, in general, provides measures of progress during the development of the system and

?A system of this kind would be unable to hit a fastball in baseball; human brains typically employ a prediction
mechanism to do that and excellent players still only hit a ball about 30% of the time.

14

Chapter 1. Introduction What is a Task Theory?

a way to highlight strength and weaknesses. For AGI, evaluation is particularly difficult, for
the chief reasons that AGI systems might be very different from each other and that their eval-
uation should provide some general measure of their cognitive abilities instead of focusing
on performance on a particular task. A task theory would enable the evaluation of different
systems, at different stages of development and on different tasks, by allowing the comparison
of tasks on the relevant axes. This comparison can come about by relating the task’s param-
eters to some physical or conceptual attributes, which can include determinism, ergodicity,
continuity, asynchronicity, dynamism, observability, controllability, periodicity and repeata-
bility. Furthermore, a task theory would make the construction of new task-environments
and variations thereof easier, allowing the construction of tasks for the specialized evalua-
tion of certain aspects of the system under test. Task-environments can also be composed or
decomposed, and scaled up or down in complexity if allowed by a task theory. Training Al
systems need to be trained for the tasks they are to carry out, and a task theory would be
useful for the creation of training task-environments. Moreover, a task theory would be use-
ful for pedagogy. Besides training environments, learning of a particular task can be sped up
by teaching, in the form of providing additional information or by showing how to perform
the task or a subtask. A task theory would equip researches with a better understanding of
tasks and allow teaching by means of analogies and abstraction. The design of Al systems
today is mostly a matter of trial-and-error, intuition and domain knowledge. A task theory
would help and speed up the design of narrow-Al systems by allowing the prediction time,
energy or other resources requirements for tasks. A task theory would also come, as already
mentioned, with the ability to compare and describe properties of tasks, which can of course
decrease the amount of uncertainty when designing these systems (Thorisson, Bieger, et al.,
2016).

Summing up the previous discussion, in (Thoérisson, Bieger, et al., 2016) the authors lay out
the requirements for a task theory:

1. Comparison of similar and dissimilar tasks.
2. Abstraction and concretization of (composite) tasks and task elements.

3. Estimation of time, energy, cost of errors, and other resource requirements
(and yields) for task completion.

4. Characterization of task complexity in terms of (emergent) quantitative mea-
sures like observability, feedback latency, form and nature of information/in-
struction provided to a performer, etc.

5. Decomposition of tasks into subtasks and their atomic elements.

6. Construction of new tasks based on combination, variation and specifica-
tions.

A task theory fulfilling these requirements would allow the development of frameworks
that can construct task models following the theory, produce variants of tasks and execute
tests in batch mode providing huge amounts of data for the Al system being tested. The inclu-
sion of energy, time and other resources grounds the theory in physical reality and allows the
performance evaluation of Al using energy as a function of time. Furthermore the precision
of the task goals achieved can be compared against the limits imposed by the laws of nature
(Thoérisson, Bieger, et al., 2016).

One possible way to go to develop a task theory, which was the starting point for this thesis,
is to consider the ratio between the solution space and the space of all possible actions. The
intuition is that the smaller is the solution space compared to the action space, the harder the

15

Chapter 1. Introduction Historical notes

task is for any particular agent (and especially for an agent that acts randomly). This ratio
can be measured in a number of additional dimensions, including time and energy, and it
would allow the comparison of tasks by placing them on a multidimensional space with the
measured dimensions as axes. The inclusion of time, energy and possibly other resources as
dimensions would also help in estimating their usage for task completion (Thoérisson, Bieger,
et al.,, 2016).

1.3 Historical notes

Attempts to provide objective measures for task analysis was started around the middle of
the 20th century, along with the field of human factors (ergonomics). Drury (1983) describes
three forms of task analysis which trace their origins to military and industrial applications
of that period: Sequential task analysis describes sequences tasks as rigid patterns with a
minimal number of choice points (Miller, 1953); Branching task analysis where the sequence
of tasks is determined by the outcomes of specific ‘choice’ tasks (Kurke, 1961); and Process
control task analysis which considers a human operator in control of many variables using a
specific strategy to monitor, sample and control them (Beishon, 1967).

Therefore the first attempts towards a task theory based on a cognitive analysis were also
made with humans as the primary focus. In 1983, Stuart K. Card, Thomas P. Moran et al.
published “The psychology of human-computer interaction,” which was concerned with the
interaction between humans and interactive computer systems. In this book they introduced
the human processor model (MHP - Model Human Processor) and the GOMS (Goals, Oper-
ators, Methods, Selection rules) model. The MHP is mostly concerned with calculating how
long it would take a human to perform a task, by taking into account experimental times
for cognitive and motor processing as well as the working memory and long-term memory
storages. The GOMS model is used to evaluate the usability of a computer system by means
of quantitative and qualitative predictions of how humans would use it. A GOMS model is
composed of four main parts: Goals, which define a state to be reached; Operators, which are
the atomic actions on the perceptual, motor or cognitive level, and are the way with which an
agent can interact with the environment; Methods, which describes a procedure to achieve
a goal; and Selection Rules to select a specific method when multiple of them are available
(Card, Newell, and Moran, 1983). The issue with both MHP and GOMS is that it is not a gen-
eral theory at all, but is confined to the context of human-computer interaction, and that it is
only concerned with user performance, rather than the tasks themselves.

Similarly, Cognitive Task Analysis (CTA) and Applied Cognitive Task Analysis (ACTA)
are focused on gathering data about people performing cognitively demanding tasks. CTA
uses interviews and observation strategies to capture expert knowledge, cognitive processes
and decisions from domain experts (Crandall, Klein, and Hoffman, 2006; Clark et al., 2008).
The outcome is typically in the form of performance objectives, equipment, procedural and
conceptual knowledge and standards of performance (Crandall, Klein, and Hoffman, 2006;
Clark et al., 2008). ACTA improves on CTA techniques, which are often resource intensive,
to be of more practical use to system and instructional designers rather than scientists by
streamlining CTA processes (Militello and Hutton, 1998).

In the field of Al proper, work on task theory has mostly consisted in frameworks for the
generation of tasks. In 2014, Garrett, Bieger and Thorisson published a paper about Merlin
(Multi-objective Environments for Reinforcement Learning), a tool for the automatic gen-
eration and tuning of Markov Decision Problems (MDPs), with the aim to evaluate multi-
objective learning capabilities in reinforcement learners. The tool supported discrete and

16

Chapter 1. Introduction Historical notes

continuous MDPs, the specification of an arbitrary number and type of goals and it could be
used for spatial navigation problems (e.g. mazes). In Merlin tasks could be constructed by af-
fecting independently the state space, the action space the probabilities associated with state
transitions given some action was executed and the reward signals. In particular, the degree
of pair-wise positive or negative association between multiple tasks in the same problem can
be fully customized for the generated MDP (Garrett, Bieger, and Thorisson, 2014).

Next came FraMoTEC (Modular Task-Environment Construction Framework). FraMoTEC
is a more general tool that allows the construction and simulation of tasks in a modular way,
using so-called building blocks. The building blocks include objects, which have physical
properties such as position, mass, velocity, etc.; transitions which are functions evolving the
state of objects; motors (i.e. actuators) and sensors which allow the controller to interact
with the environment by spending energy; systems which act as containers of other building
blocks; and finally goals, which define states to be reached with tolerance values and time
constraints (Thorarensen et al., 2016).

The latest framework that has been developed is SAGE (Simulator for Autonomy & Gener-
ality Evaluation Framework). SAGE can be considered to be an evolution of FraMoTEC with
the advantage that is general enough that it can be used for evaluation of both narrow and
AGI-aspiring systems, while FraMoTEC was specifically catered to general learners (Eberding,
Sheikhlar, and Thérisson, 2020).

On the analysis of tasks not much has been done since the 80s, but an approach relying
on expert knowledge was published in 2018 by Bieger and Thoérisson. Such approach re-
quires a domain expert to explain the actions to be performed to carry out some task, with
an interviewer following the typical requirements engineering workflow. The sequence of
actions obtained at this step should allow the construction of a dependency graph and the
interviewer should make sure that the actions are simple enough that cannot be further bro-
ken down in more sub-actions. Next comes the step of characterizing the actions in terms
of their inputs, outputs and how the transformation of the former into the latter is carried
out. Moreover, a way to assess the success or failure of an action should be specified. The
task to be performed can then be decomposed in simpler components, either in the terms of
the actions to be executed (Task-based decomposition), the variables that are part of the task
(Feature-based decomposition) or by some specific functionality that is a sub-part of the task
(Functionality-based decomposition). After this step, all that is left to do is to construct an
appropriate teaching curriculum for the specific learner that is to perform the task (Bieger
and Thorisson, 2018).

17

CHAPTER 2

Background

In this chapter we introduce the necessary notions on which our task theory rests on. In Sec-
tion 2.1 we clarify what we mean by model and in particular what is meant by causal-relational
bi-directional model, while in Section 2.2 Thoérisson’s theory of pragmatic understanding is
introduced, which makes use of these models to define what it means to understand a phe-
nomenon and how to characterize meaning. In Section 2.3 the concept of causality is dis-
cussed, introducing the work of Judea Pearl about causal diagrams and then moving onto the
‘manipulative’ approach to causality. Towards the end of the section, the mini-Turing test
devised by Pearl is presented, together with my attempt to administer it to NARS.

2.1 Bi-directional models

A model is an information structure that is used as a representation of the thing being mod-
elled. A model should resemble in some way the subject of the modelling, usually abridged
of unimportant details and structured in such a way that it allows various manipulations on
it for the purpose of making queries and obtaining answers about the thing it models. The
particular type of manipulations that can be performed depends on the specific model, and
different models of the same thing can allow different types of manipulations. A model by
itself is useless without an appropriate process that makes use of it: the particular type of
process with its limitations define what can be done with some model. A typical example
of model would be a computational model, which can be used to answer what-if questions
through the process of performing simulations. Models are characterized not only by the form
of representation, but also by their comprehensiveness and level of detail, which determine
what use can be made of the model (Thorisson, 2020d).

Models encode actionable information, in the sense that they can be used to get things
done, like predicting future states, derive the causes of observed events, explain observed
phenomena and, obviously, act as re-creation of the thing being modelled. The process by
which a set of models allow an intelligent agent to perform these things can be considered
as a sequence of steps: first find the relevant models, then apply them to derive predictions,
actuate the actions based on the predictions and lastly monitor the outcomes of said actions.
Incorrect models that don’t lead to the expected goals are pruned and modified so that over
time only correct models remain in memory, in this sense it can be said that they encode

18

Chapter 2. Background Bi-directional models

non-axiomatic and defeasible knowledge (Thorisson, 2020d).

A modelis, by definition, a representation of something, that is, an encoding of some data or
measurements of the physical world. Representation is fundamental, because all knowledge
used for intelligent action must contain some sort of representation of the things it refers to.
Given the fact that all the information in the world is much greater than the ability of any
system to store all of it, effective information storage in the form of appropriate models is
one of the fundamental building blocks of any theory of intelligence (Thérisson, 2020d). In
fact, an even more general result applies, that can be summarized as “Every good regulator!
of a system must be a model of that system” (Conant and Ashby, 1970). Conant and Ashby
proved, in what they called the “Good regulator theorem”, that any optimal regulator must
in some way behave as a mirror image of the system it regulates, i.e. there must be some
mapping from the states of the system to the states of the regulator, and such mapping makes
the regulator a model of the system (Conant and Ashby, 1970). The implication of this result
from control theory is that an intelligent learner must proceed by modelling the physical
world to appropriately ‘control’ it, i.e. be an efficient survivor? in the complex environment
that real life experience presents (Thoérisson and Talbot, 2018b).

The kind of models that this thesis talks about are bi-directional, in the sense that can be
executed in forward-chaining to produce predictions and in backward-chaining to achieve
goals, by chaining back a path of states until a performable action is reached (Thérisson and
Talbot, 2018a; Thoérisson and Talbot, 2018b). These models are also causal-relational models, in
the sense that they are an executable information structure that encodes procedural (causal)
knowledge, where the left-hand side (LHS) is the cause and the right-hand side (RHS) is the
effect. The LHS is the ‘input’ of the model, and represents a pre-conditional pattern composed
of variables, values and so on and it specifies, through pattern matching, in which situation
a certain model is relevant. The RHS then represents the post-conditions of the LHS pattern.
In forward-chaining, when the LHS pattern is observed, a prediction based on the RHS is
generated by a process of deduction. In backward-chaining, when the RHS pattern is observed
and it is a goal, a sub-goal based on the LHS is generated. Sub-goals can be further backward-
chained until a command for some actuator is produced, and in this way models can be used
to produce effective plans to achieve goals. If the RHS is not a goal, backward-chaining can be
used to derive potential causes for the observed state. Model also incorporate a number that
specifies how many time the model was correct out of all the times it was applied, this value
gives an idea of the accuracy of the model, and to discriminate between multiple models that
could be used in the same situation. To transform the RHS into the LHS or viceversa, models
incorporate two sets of (learned) functions that actually carry out the transformation, i.e.
functions that model the actual physical mechanisms that in the real world act between the
actually existing physical entities (Thorisson and Talbot, 2018a; Thorisson and Talbot, 2018b).

Furthermore, such bi-directional models can refer to other models in order to form a hi-
erarchy, making it possible to represent compound phenomena and, in particular, to be used
by an intelligent agent to model itself in a reflexive manner. A model M, may be featured
on the LHS of another model M3, in such case specifying a post-condition of the successful
the execution of M, by predicting its outcome. Viceversa, if M, features on the RHS of Mp
it specifies a positive pre-condition of M,, predicting the successful execution of M, when
the premise of Mj is observed. Models can be built in conjunctive form, in which case they
specify a causal relationship whose effect is brought about by a certain context made up of
multiple, temporally correlated, required pre-conditions. Models built in disjunctive form, on

"What is meant in control theory by ‘regulator’ is equivalent to the Al notion of ‘controller’
*Intelligence can be seen as a survival tool to cope with the insufficient knowledge and resources that charac-
terize life in the real world.

19

Chapter 2. Background A Theory of Understanding

the other hand, specify a causal relationship where the effect is brought about by the occur-
rence of the most likely pre-condition: positive pre-conditions are a set of options that entail
the success of the model (Nivel, Thérisson, Steunebrink, and Schmidhuber, 2015).

The simplest terms that can serve as inputs for the LHS or RHS of a model are called facts,
and include a payload, which is the observed event, a likelihood value indicating the reliability
of the observation and a time interval specifying the period within which the fact is believed
to be true. Therefore facts are valid only within a certain time interval, and thus the execution
of models is time-dependant. The ground-truth of facts is valid to the degree specified by the
likelihood value and only within the specified time-interval (Nivel, Thorisson, Steunebrink,
Dindo, et al., 2014).

2.2 A Theory of Understanding

In the context of this thesis the concept of understanding that is used comes from the theory
of pragmatic understanding laid out in (Thoérisson, Kremelberg, et al., 2016) and (Bieger and
Thorisson, 2017). The pragmatism of this theory lies in its focus on the practical usefulness
of a certain level of understanding in guiding behavior to achieve goals and perform tasks
(Thoérisson, Kremelberg, et al., 2016). For the purposes of anchoring our proposed concept of
“intricacy” (see Section 3.3), we provide a detailed summary of this theory here.

Before defining understanding, it is necessary to introduce the concept of phenomenon. A
phenomenon & C W where W is the world is composed of a set of elements {¢1, @2, ..., ¢, €
&} of various types, including relations PR that bind elements of ¢ with each other and with
elements of other phenomena. One important type of relations are causal relationships, but
other types can be considered too, for example mereological relationships. These relations
can be partitioned in two sets, the set of inward facing relations RY* = Re N (2% x 2%) and
the set of outward facing relations R§** = Ry \ i)%f{“. An agent understanding only %fg‘ can
be said to understand the phenomenon ¢ but not its relation to other phenomena, while an
agent understanding only R$** understands the phenomenon’s relations to other phenomena
but is unable to understand its inner workings (Thérisson, Kremelberg, et al., 2016).

An intelligent system’s understanding of a phenomenon comes about by its creation of
models of the phenomenon. For the purposes of this discussion, we assume that these models
could be the kind of bi-directional models discussed above in Section 2.1. A set of models
Mg for a phenomenon & consists in information structures that can be used to (1) predict &,
(2) produce effective plans to achieve goals with respect to ®, (3) explain $ and (4) re-create
&. The better these models represent elements ¢ € ¢ including their relationships RRg, the
greater is the accuracy of Mg with respect to & (Thorisson, Kremelberg, et al., 2016).

Therefore, considering an agent A’s knowledge to be a set of models M, Thorisson, Kremel-
berg, et al. (2016) define understanding as:

Definition 2.2.1 (Understanding). An agent’s A understanding of phenomenon & depends
on the accuracy of M with respect to ¢, Mg. Understanding is a (multidimensional) gradient
from low to high levels, determined by the quality (correctness) of representation of two main
factors in Mg:

U1 The completeness of the set of elements ¢ € $ represented by M.
U2 The accuracy of the relevant elements ¢ represented by Ms.

The understanding of a phenomenon @ is evaluated by testing on, at least, the follow-
ing four capabilities of the understander, ordered by the increasing level of understanding

20

Chapter 2. Background A Theory of Understanding

required to master each: prediction, goal achievement, explanation and re-creation in the
context of ®. Each of these capabilities can be evaluated in a range between zero and one as
a function of U1 and U2 (Thérisson, Kremelberg, et al., 2016).

Prediction in the context of a phenomenon consists in inferring values of variables given
the values of other variables. These predictions need not necessarily be forward in time,
but may be about the current time step or even about past values. In fact, predictions don’t
even need to follow the causal direction and don’t necessarily require an understanding of
causal relationships. Predictions may be computed by associations alone, because the state
of a variable can already be inferred by reasoning on the co-occurrence of the state of other
variables® (Thoérisson, Kremelberg, et al., 2016). Predictions, as understood in this theory of
understanding, mirror Pearl’s observational queries in his characterization of causation as a
ladder, and both are the lowest level of their respective hierarchy, as they are the simplest
form of intelligent behavior. As previously mentioned in the discussion about Pearl’s work,
from animals and humans to machine learning algorithms, most if not all intelligent systems
show a high degree of proficiency in predicting events and states. In fact, even non-intelligent
systems such as linear regression or Bayesian probability are good at such predictions, and it
may be argued that intelligence is not a requirement at all for building good predictors. The
predictive ability of a system can be evaluated by giving the system a set of variables with
their respective values, along with the time at which those values were sampled, and then
asking different types of questions. A type of question might show the system another set of
variables with their values and a certain time ¢, and would correspond to asking the system
whether the variables shown will take the given values at the time £. Another type of question
might omit the values of the variables and the query would be asking the system what values
would those variables jointly have at time £. In a similar way, omitting the time would result
in asking at what time would the variables obtain their values, if any such thing is possible
at all. Even the variables can be omitted, and it would correspond to asking which variables
can take the given values at the given time ¢. Furthermore, questions could be formulated
by omitting a combination of the variables, values and possibly the time, or instead of giving
precise values a range of values could be used as a way to partially omit values. The answers
to any of these queries might not be unique, and it could be expected of the system to produce
all of them, possibly with a confidence value for each of them (Bieger and Thoérisson, 2017).

Achieving goals in the context of a phenomenon is a further step above predictions, be-
cause it necessarily requires an understanding of causal relations, in particular of the causal
relations that relate variables under the intelligent system’s control (the manipulatable vari-
ables) to its goals. For this end, models that capture the interaction of the system with the
world become absolutely necessary (Thorisson, Kremelberg, et al., 2016). To evaluate goal
achievement the system is assigned a task that is related to the phenomenon in some way.
By task, or rather task-environment, is meant an activity with an initial state (the variables’
values at the initial time step) and a goal which is the target set of values for a subset of the
variables of the task. A task might possibly also have a set of constraints that if violated result
in instant failure, an allotted energy and time requirement for the system to conclude the task
(a must for tasks in the physical world) and some additional information. Since the body of the
system is part of the task-environment, some of the variables of a task are manipulatable (oth-
erwise the system cannot possibly do anything), while some others might only be observable
(through the sensors on the body of the system). Additionally, at least a subset of the manip-
ulatable variables must in some way be causally related to the goal variables. The ability of a
system to achieve its goals can be evaluated by testing its ability to produce effective plans for
executing the assigned task, where by effective plan is meant that the plan can be proven to be

*It is not excluded that understanding of causal relations might indeed help anyway.

21

Chapter 2. Background A Theory of Understanding

useful, efficient, effective, and correct, through implementation. By evaluating the production
of plans instead of goal achievement directly, the issue of dealing with task-specific interfaces
(i.e. a particular body for the system) is avoided (Bieger and Thoérisson, 2017). The achieve-
ment of goals can be said to correspond to the ability to answer interventional questions in
the second rung of Pear!’s ladder of causation, as in both cases the intelligent agent is required
to understand the consequences of their (or someone else’s) actions in the world, and for that
causal relations have primary importance. The passive observation of the world and its as-
sociations, which suffices for prediction/observational queries, is inadequate for reaching a
task’s goal state, or to correctly predict the effects of actions on variables.

Explanation of phenomena is a further step in demonstrating understanding. While even
goals in some cases might be achieved through some carefully executed tricks without using
models, explanations require a correct causal model of the phenomenon’s inner and outer
relations. Explanation of a phenomenon consists in finding the necessary and sufficient causes
for the event the intelligent system is being asked about; furthermore the system must be able
to highlight what causes are salient, that is, which variables are the most prominent among
all the identified causes (cf. actual causes by Pearl) (Thorisson, Kremelberg, et al., 2016). To
evaluate an intelligent system’s explanation capabilities, it would be useful to ask explanations
at different levels of abstraction, from the lowest to the highest level of detail. Another way
would be to introduce novel modifications to the phenomenon and see whether the system
is still able to produce meaningful explanations. This makes not only possible to verify the
accuracy and completeness of the understander’s causal models, but also a way to find what
are their boundaries. As of today, practically no Al system is capable of providing any such
explanation, neither in natural language or in any other lower level machine language (Bieger
and Thorisson, 2017).

Lastly, the (re)creation of a phenomenon is the strongest form of evidence of an intelligent
system’s understanding of it. Creating or re-creating a phenomenon involves the production
of models that expose its necessary and sufficient features, in the same that scientists today
are able to produce models of the universe or of the human body (Thoérisson, Kremelberg,
et al., 2016). This ability can be evaluated by giving a system some of type of materials or
components and then asking it to combine them to recreate the phenomenon being tested, or
at least to imitate it in the best possible way. As for explanation, there are virtually no Al-
systems today able to produce models that can be understood and interpreted by us (Bieger
and Thorisson, 2017).

Parallels can be traced between explanation and (re)creation of phenomena with Pearl’s
third rung of the ladder of causation, counterfactual reasoning. Counterfactual reasoning al-
lows an intelligent system to reason about what could have happened had something occurred
differently. It requires a model of the world, or of a phenomenon, that is accurate enough to
make the agent able to find out the reason why things turned out the way they did. It is
therefore a model precise enough to be in fact a re-creation of the phenomenon at hand. Fur-
thermore by having such a model the agent can compute the sufficient and necessary causes
of events and sub-parts of the phenomenon, and would therefore also show a considerable
skill in providing human understandable explanations.

Having introduced this theory of pragmatic understanding, now it is possible to discuss the
concept of meaning. A causal event T acquires meaning for some agent A when z has potential
to influence something of relevance to one or more of the agent’s goals G. Given some event
z that might be relevant for A, the agent can compute its meaning with respect to any of
its goals in the current situation, where the current situation consists in the actual values
of some subset of the world’s variables. The consequence of also considering the current
situation when assigning some meaning to an event is that meaning depends on the context,

22

Chapter 2. Background Causality

and thus also on time. Therefore, for any agent, something holds any meaning insofar as it
is related to some time-constrained goal. The meaning of any given datum (where a datum
could be an event, a perception from a sensor, or even the result of an internal reasoning
process) consists in its set of implications in the current (time-dependent) context for some
active goal of the agent. An agent should seek to compute the implications that are relevant
for its goals, giving precedence to those that are more temporally salient. An intuitive way to
characterize what data might provide relevant implications for a goal is to take the point of
view of causal diagrams. If a datum is generated from a variable that is part of a causal path
that leads to the goal variable, then there’s good reason to believe that it might provide the
agent with relevant implications (Thorisson, Kremelberg, et al., 2016).

2.3 Causality

Having described causal-relational models and understanding in the previous sections, we
can now introduce Pearl’s (Pearl, 1988; Pearl, 2009; Pearl and Bareinboim, 2014) approach
to causality. The most important type of relationships that a learner needs to understand to
execute a task are the causal relationships that relate its actions and observations to the task’s
goals. The objective of this section then is to clarify what are causal relationships, why are
they needed and how they can be formalized in a mathematical language. The concept of
causal diagram is also presented as it will be the basis for the representation of tasks in Chap-
ter 3. The contents and level of detail of this section is higher than what is strictly necessary
for the subsequent discussion but we included it here anyway for the benefit of future readers
who might find useful to see a compact overview of some of Pearl’s work on causation.

Pearl and Mackenzie’s account of causality is introduced by the useful metaphor of a three
step ladder corresponding to to three levels of causal reasoning: association, intervention and
counterfactuals (Pearl and Mackenzie, 2018, pp. 27-43). These levels describe a progression
in cognitive abilities from the lowest level of reasoning by association to the highest level of
counterfactual reasoning,.

The first rung of the ladder is concerned with predictions based on passive observations of
the world. Reasoning is performed by looking at associations in the data, that is, by looking at
whether the occurrence of some event results in a greater (or lesser) likelihood to observe an-
other event. Measures of association, of which correlation is an example, cannot discriminate
causes from effect and neither can tell if any causal relationship is present at all; nevertheless
good predictions are possible even without causal knowledge. The types of questions that ex-
emplify this level are concerned with estimating values of variables given the observation of
other variables. Besides animals, Pearl and Mackenzie also claim that most learning machines
are also stuck at this level of cognition. Machine learning and deep learning algorithms, as
cleverly designed and finely tuned for their tasks might be, only work with pure data and
do not incorporate causal knowledge, and therefore are limited to work by association of
observations (Pearl and Mackenzie, 2018).

At the second step of the ladder the concern is shifted from the observation of the world to
the active intervention in it. An agent that is able to reason about interventions can predict
the consequences of its and other agents’ actions and is able to come up with plans to bring
about desirable states. In order to do so, data is not enough and the agent needs a (causal)
model of the world. Having such models essentially enables the agent to act in a goal-driven
manner by backwards chaining from some goal state all the way back to its range of possible
actions. The authors put babies and early hominids as examples of organisms that perform
this type of goal-driven reasoning (Pearl and Mackenzie, 2018).

23

Chapter 2. Background Causality

The third and last step is about counterfactuals, reasoning about past states that never were
but could have been. This type of reasoning allows an agent to reflect on its past actions and
learn to do better a future time, or even to learn from the experience of others. This type
of reasoning also allows to find the reason why things turned out the way they did, or why
they did not. According to Pearl and Mackenzie only modern humans are capable of this, and
the break with early hominids who could not that happened sometime about 40,000 years
ago marked a change in human cognitive abilities, which eventually resulted in the series
of technological advancements that brought about modern civilization. Endowing an agent
with this capability requires a model that encompasses the underlying causal processes, in
other words, knowledge of the laws that regulate the world the agent lives in. Having such
a theory of the world allows reasoning about not only about situations that could have been,
but also about total impossibilities. It is precisely this capacity of thinking about things that
never existed that have driven the human development of philosophy, science and technology
(Pearl and Mackenzie, 2018).

Following this introduction, we can introduce the definition of structural causal model.

Definition 2.3.1 (Causal Model, Structural Causal Model (Pearl, 2009, p. 203)). A causal
model is a triple:

M =(U,V,F)

where:
i) U is a set of background variables that are determined by factors outside the model;

ii) V is a set {v1, va, ..., Un } of variables, called endogenous, that are determined by vari-
ables in the model, i.e. U U V;

iii) F isasetoffunctions {f1, f2, ..., fn} such that each f; is a mapping from (the respective
domains of) U; U PA; to V;, where U; C U and PA; C V' \ V; and the entire set F forms
a mapping from U to V. Or equivalently, each f; in:

Vi = fi(PAi; Ui): 1= 11 o n (21)

assigns a value to v; that depends on the values of a select set of variables in U U V,
and the entire set F' has a unique solution V' (u).

Each equation in a structural causal model has two peculiar characteristics: it represents
an autonomous mechanism (Pearl, 2009, p. 27) and the equality sign is asymmetrical (Pearl,
2009, pp. 159-162). By autonomous mechanism is meant that each equation is not affected by
changes in other equations, and therefore an intervention that targets one variable v; leaves
all other equations in place for any v; with j # 1. The equality sign is asymmetric in the
sense that when dealing with interventions the equations cannot be reversed to determine
any other variable than v;. For example, if the structural causal model includes the equation
v; = 5 - v; + u, then the equation v; = *z* does not necessarily hold. Both equations
hold if they are relating observations of variables, but when dealing with interventions the
latter cannot be used to determine the value of v;. Intuitively, if the value of v; is determined
by v; because it is featured on the right hand side of the structural equation of v;, then a
change in v; influences the value of v;, but the opposite does not hold unless, in fact, v;
is also present on the right hand side of the structural equation of v; too. Therefore the
equality sign in structural equations behave as in standard algebra only when dealing with
observations, because then the equations just express the observed relationships between
variables in the model. This different interpretation of equalities is further clarified by the

operational definition of structural equations given by (Pearl, 2009, p. 160).

24

Chapter 2. Background Causality

Definition 2.3.2 (Structural Equations (Pearl, 2009, p. 160)). An equation y = f(z) + €
is said to be structural if it is to be interpreted as follows: in an ideal experiment where the
value of X is set to z and any other set Z of variables (not containing either X or Y') is set to
some value 2, the value y of Y is given by f(z) + €, where € is not influenced by either z or
z.

The consequence of this definition is that it is only concerned with the value of 4: nowhere
it states anything about what values z or € can take when controlling for Y.

2.3.1 Causal diagrams

In this section we provide the necessary graph-theoretic terminology that will be used in the
rest of this thesis, and then we introduce the concept of causal diagram.

A graph is a pair G = (V, E) that consists in a set of vertices, also called nodes, V' and a
set* of unordered pairs of vertices, called edges, E C V x V. A graph is directed if the set
of edges E consists in ordered pairs of vertices (z,7) € E, where the first index marks the
source node and the second index marks the destination node, and each edge is rendered
as ¢ — j. Edges of this type can be properly called directed edges or arrows.

Two nodes ¢ and j are considered adjacent if either (¢,7) € E or (3,¢) € E, and a graph
G is fully connected if all nodes are adjacent with each other. The in-degree of a node
is the number of incoming directed edges, while the out-degree of a node is the number of
outgoing directed edges. A node i is a parent of a node j if 2,7 € E but 7,7 ¢ E; in such
case j is also called a child of node . The set of parents of a node 7 and the set of children
of a node % are denoted PA; and CH; respectively. A path is a sequence of edges joining a
sequence of adjacent nodes, with all edges and nodes distinct. A directed path is a path such
that the destination node of each edge in the path is the source node of the following edge in
the path. If there exists a directed path from any two nodes % and 7, ¢ is called an ancestor of
7 and 7 is a descendant of 3.

For the purpose of this thesis we are mostly interested in directed acyclic graphs. A di-
rected acyclic graph, or DAG for short, is a directed graph with no directed cycles, that is,
for any two nodes 7 and j, either there is a directed path from i to j, from j to %, or neither of
the two. Consequently, if (¢, 7) € E then (7,1) ¢ E.

Causal diagram Any structural causal model has an associated graph where each vertex
corresponds to a variable v; and a directed edge is drawn from each pa € PA; to v; (Peters,
Janzing, and Scholkopf, 2017). In other words, a directed edge is drawn from any variables
occurring on the right hand side of each equation (2.1) to the vertex occurring on the left hand
side. The resulting graph is assumed to be a directed acyclic graph.

It is now possible to introduce Pearl’s definition of d-separation (Pearl, 1988). The d-
separation criterion applied to any two disjoint sets of variables X and Y allows the iden-
tification of another disjoint set of variables Z which makes X and Y independent of each
other when Z is controlled for. For the application of the d-Separation criterion the variables
need to be represented as nodes of a directed acyclic graph (DAG) whose arrows, correctly
represent their causal relationships(Pearl, 2009, p. 16).

Definition 2.3.3 (d-Separation (Pearl, 2009, pp. 16-17)). A path p is said to be d-separated
(or blocked) by a set of nodes Z if and only if at least one of the following is true:

*Therefore loops are not allowed.

25

Chapter 2. Background Causality

1. p contains a chainz -+ m — joraforki < m = jandm € Z;

2. p contains a collider 7 — m < j such that m ¢ Z and neither does any of his descen-
dants.

A set of nodes Z d-separates X from Y if and only if Z blocks all paths from any node in X
to any node in Y.

The concept of d-separation can be better clarified when giving causal meaning to the
arrows of the graph.

A chain 1 — m — j is a typical case of mediation, where the effect of 2 on 7 comes forth
by the influence of the mediating variable m. An example of such a chain is

coffee consumption — caffeine intake — wakefulness

where the effect of the consumption of coffee on the wakefulness of an individual is mediated
by the actual caffeine intake. The variable caffeine intake d-separates coffee consumption
and wakefulness, therefore adjusting for it would make the other two variables independent
of each other. It can be imagined that when only looking at data for a certain value of caffeine
intake, the consumption of coffee need not be correlated with wakefulness at all; sometimes
people get their caffeine kick from tea, or they just drink lots of decaf.

A fork i <~ m — j can be described as the case of a common cause m causing both z and
j. In this case m can be properly called a confounder of the other two variables, because %
and 7 would appear correlated even though there’s no causal relationship between the two.
An example of a fork is

ice cream sales +— weather — crime rate

where a warmer weather, e.g. in summer, increases both ice cream sales and the crime rate,
which appear to be associated despite having no causal link. This association disappears (the
relationship is deconfounded) when controlling for the weather and adding weather to Z
d-separates ice cream sales and the crime rate.

A collider 7 — m < j represents a situation where a variable of interest m is influenced
by two different causes 7 and 7. An example is described by Sackett (1979) of a purpoted
association between locomotor disease and respiratory disease in hospitalized patients. The
collider can be visualized as

locomotor disease — hospitalization ¢— respiratory disease

Examining only hospitalized patients is equivalent of conditioning on the hospitalization vari-
able, therefore locomotor disease and respiratory disease appear to be correlated even though
in the general population (i.e. when not conditioning on hospitalization) they are not. This
phenomenon is known as selection bias or Berkson’s paradox(Berkson, 1946). A similar phe-
nomenon is observed in the following example presented by Kim and Pearl (1983)

earthquake — alarm « attempted burglary

in this case conditioning only on the event where the alarm goes off, a negative association
is observed between the earthquake and attempted burglary variables: usually either of the
two is enough for the alarm to ring and it is very unlikely for the two to occur together.
This phenomenon is known as the “explain away” effect (Kim and Pearl, 1983), because the
occurrence of one event explains away the absence of the other event. In both the previous
examples the variables on the edges are d-separated only when the middle variable is not

added to Z.

26

Chapter 2. Background Causality

2.3.2 Representing time in causal diagrams

Causal diagrams can be extended to model time series data. Reasoning about causation on
variables that refer to different moments in time is actually easier than timeless data, because
causation can occur only forward in time (Peters, Janzing, and Schélkopf, 2017).

Causal diagrams can now include an infinite number of nodes as they stretch indefinitely
in the future. The nodes of the causal diagram are denoted by X; where 7 € {1,...,d} is
the index denoting a variable in the d-dimensional vector X¢ and t € Z is the temporal index
of the variable. Since causation cannot occur from the future to the past, there are only two
types of causal relations to describe: from the past to future and from the same time step
(Peters, Janzing, and Schélkopf, 2017).

A causal diagram containing arrows only from X} to X¥ for ¢ < s and not for t = s is
said to be without instantaneous effects, as causal links only occur from a past time step ¢ to
a more recent time s. On the other hand, a causal diagram which also contains arrows from
X to X[for some j and k is said to feature instantaneous effects. A causal diagram is said
to be purely instantaneous if it contains arrows from variables X7 to X} and X7 but not X%,
for 7 # k and t < s (Peters, Janzing, and Scholkopf, 2017).

Furthermore, we can distinguish the full time graph from the summary graph. The full time
graph is a complete representation of the causal diagram with an infinite number of nodes
X}. The summary graph is a more compact representation, with nodes X* fors € {1, ...,d}
and arrows from X 7 to X* for j # k whenever in the full time graph there is an arrow from
X] to X¥ for t < s. While the summary graph might contains cycles, the full time graph is
assumed to be acyclic (Peters, Janzing, and Schoélkopf, 2017).

The structural causal model associated with the full time graph can include at most the past
g values of all variables in a given structural assignment. The structural assignments are of
the form:

X7 = 7 (PAD)—q (P4 1)i—gi1, .-, (PAY):, U})

which means that a given variable X7 at time ¢ can be affected by the set of its parents from
time ¢ to time ¢ — g for some fixed ¢ and the set of endogenous variables U 7 at time t. Of
course, PA] _ does not contain X; , for s = 0, but it may for any s > 0 (Peters, Janzing,
and Schoélkopf, 2017).

2.3.3 Association and correlation

Every student of statistics knows that correlation does not imply causation, but, as Pearl and
Mackenzie put it, “some correlations do imply causation”(Pearl and Mackenzie, 2018, p. 77).

The concept of correlation can be traced back to Sir Francis Galton in 1888, when he com-
pared forearm and height measurements and realized that the predictions of the value of a
variable given the other were always points on the same line, the regression line(Galton,
1888). The formula for correlation was later introduced by Karl Pearson, and the slope of the
regression line was called the correlation coefficient. Correlation is just a particular type of
association, specifically, a linear association between variables.

The first problem when considering associations is that, intuitively, not all associations are
meaningful. Compare, for example, the association that exists between ice cream sales and
murders with the association that exists between clouds and rainfall. Both associations might
well be very strong, but the former just seems spurious, as some associations are rightly called.
The reason is that ice cream sales and crime are not causally related at all, but are associated
because of an hidden common cause, a confounder (e.g. weather, season and so on). The

27

Chapter 2. Background Causality

association between clouds and rainfall, on the other hand, seems an obvious one as it is the
result of the presence of causal relationship between the two, because clouds cause rainfall.

As the following section will show it is not possible to discriminate which associations
are meaningful and which are not without referring to the concept of causation (Pearl and
Mackenzie, 2018, p. 72).

2.3.4 Linking association with causation: the Common Cause Principle

The Common Cause Principle was introduced by Reichenbach (1956) to explain the occur-
rence of statistical dependencies (associations) in data as the result of (possibly unknown)
causal links.

Definition 2.3.4 (Reichenbach’s Common Cause Principle (Reichenbach, 1956)). As-
sume that two random variables A and B are not statistically indepdendent, that is A Il B.
Then any combination of the following must be true:

« A causes B
« B causes 4

« A third variable C'is a (Reichenbachian) common cause of both A and B

In short, what the Common Cause Principle says is that for any association found in the
data, there must be a causal explanation for it. While this statement might be true in most
cases, there are some known exceptions. Firstly, association between variables might arise
as a consequence of selection bias (see the discussion on colliders in Section 2.3.1). Second,
spurious associations might arise when looking at time-series data of phenomena that are both
developing over time. And finally, some associations appear solely due to random chance,
due to the multiple comparisons problem. If none of these considerations apply, the Common
Cause Principle provides the only possible explanation for the observed dependence (Peters,
Janzing, and Scholkopf, 2017, p. 7).

2.3.5 The manipulative approach to causation

The approach to causality that is followed in this work is the so-called “manipulative ap-
proach” (Pearl, 2009, pp. 223-228). In this description of reality, the physical world is made up
of independent and invariant mechanisms, each of which constrain a finite set of variables.
The interaction between mechanisms is usually carried out through shared variables (i.e. a
variable might be part of multiple mechanisms), therefore to predict the causal consequences
of an action being performed, which can be usually understood as setting a set of variables
to some value, it is only necessary to set down the relevant mechanisms and then follow the
ensuing interactions between mechanisms until a new steady state is achieved. The under-
lying assumption of this framework is that these actions are local surgeries. By locality, here
is meant that actions are local in the space of mechanisms (instead, e.g., of variables or time).
That is, an action only alters a specific mechanism while all other mechanisms remain in
place. Pearl relates here a useful example of an array of domino tiles: tipping a tile is by no
means a local action, as it affects the full array, yet it is local in the sense that it only affects
the mechanism regulating that one single tile, which in this case are the physical forces that
maintain it erect and still. Since all other mechanisms remain in place unaltered, any other
mind possessing the causal model of this example is able to compute the consequences of this
action. It is precisely in this sense that causal diagrams can answer such a huge number of

28

Chapter 2. Background Causality

queries about the effects of actions without having to fully specify all the possible outcomes
beforehand (Pearl, 2009).

Pearl goes on to justify the notion of causation on the grounds that, except for the context
of physics and engineering, mechanisms in everyday scenarios don’t usually have names. Un-
like electrical circuits where one only has to input different values in systems of well known
equations, real life interventions are usually in the form of propositions (like “press the but-
ton”, or, using Pearl’s own terms, ‘do(z)’, where z can be any proposition). This specification
is nonetheless sufficient if the knowledge is organized causally, because each variable is deter-
mined by only one mechanism. Therefore intelligent beings are able to find out by themselves
which is the mechanism to be perturbed to carry out the specified action and subsequently de-
rive the consequences on the other mechanisms. This linguistic abbreviation, as Pearl puts it,
defines a relation that is usually called ‘causation’. The definition he provides is the following:

Event A causes B if the perturbation needed for realizing A entails the realization
of B. (Pearl, 2009, p. 225)

where by ‘needed’ is meant that there is a condition of minimality in the perturbation re-
alizing A. Relationships between variables and the interaction of mechanisms are most com-
monly expressed in terms of this type of cause-effect relationships, instead of the mechanisms
themselves (Pearl, 2009).

Using this approach to causality it is necessary that for each equation of a structural causal
model, representing an individual mechanism, there is a single, special variable that is featured
on the left-hand side and is specified as the dependent (output) variable. In general, though,
mechanisms can also be specified as a function constraint in the form of:

Gr(z1, T2, ..., T, U1, U2,y ..., Upy) =0

In such cases, it is possible to wonder whether given a set of such functional constraints it
is still possible to find the unique dependent variable for each mechanism. To do so, under the
assumption of locality of actions, Pearl relates the following procedure: let A to be the set of
actions affecting the equation Gy, and suppose that an action a € A was chosen and that the
changes it effected to G, altered the solutions of the system of equations compared to before
the action was taken. Then if X is the set of variables featuring in Gy, check if there is some
X}, variable that is responsible for the changes in all other solutions. If X} remains the same
for all choices of actions in A and u, then that is the dependent variable of G. Therefore it
can be said that the changes effected by A can be ascribed to the changes in Xy, therefore
X can be considered the ‘representative’ variable of mechanism Gy, and saying that action
a caused event Y = y would be tantamount of saying that event X = z caused Y = y,
because of the invariance of X} with respect to the choice of action. Because of that it is
possible to write such action as do(Xy =) when in fact zj can be best understood as the
causal consequence of said action, and it is given a clear meaning to the notion of locality of
actions. Such procedure requires knowledge of which variables are the background factors u,
otherwise there can be many possible different representative variables, depending on which
variables are selected as background factors. Furthermore a dependent variable in a model
might become independent in another model, even if part of the same mechanism (Pearl,
2009).

This asymmetry of structural equations representing causal relationships does not conflict
the usual symmetry that characterizes physical equations. Stating that X causes Y and not
the other way around means that changing the mechanism of X (the mechanism where X is
the dependent variable) has a different end result than changing the mechanism of Y. Pearl

29

Chapter 2. Background Causality

Court Order (CQO)

Captain (C)

/

A () B

Death (D)

Figure 2.1: Causal diagram of the firing squad scenario.

claims that since these two mechanisms are different, the preceding causal statement is not
at odds with the symmetry of equations in physics and engineering. In fact, the feasibility
of ascertaining for each equation which variable is dependent means that the discovery of
causal relationships is in effect equivalent to the discovery of physical laws by means of, e.g.,
experimentation. According to Pearl, the problem of causal induction can be thought of as
equivalent to the better known problem of scientific induction (Pearl, 2009).

2.3.6 The mini-Turing test

Pearl and Mackenzie (2018, pp. 43-52) introduce the mini-Turing test as a test to verify if a
machine can answer causal questions in the same way a human can. The machine would
be given an appropriate encoding of a story and then asked some questions about it. It is
important to note that the machine is given this data using the best possible representation
for the machine and that all the information given is already correct; i.e. there’s no need for
the machine to learn anything more than it is given or to perform (a possibly very difficult)
causal discovery to learn what relations are there between variables.

A proposed representation that machines should use to pass the test is a causal diagram as
was defined in Section 2.3.1, which according to Pearl and Mackenzie is also the only model
known to pass the test.

The example story that is described by Pearl and Mackenzie (2018, pp. 46-47) is about a
firing squad, where a Court (CO) orders the execution, the order is relayed to a Captain (C)
which in turn gives his command to Soldier A and Soldier B. Both soldiers always follow or-
ders and always hit the target, so anyone of them shooting is enough to cause the prisoner’s
Death (D). This story is represented by the causal diagram shown in Figure 2.1. All the vari-
ables in the diagram can be understood as Boolean variables where a value of 1 means the
event has happened (e.g. C = 1 means that the Captain gave his command) and a value of 0
means it has not (e.g. A = 0 means Soldier A didn’t fire).

To illustrate this example, the firing squad story was presented to the Non-Axiomatic Rea-
soning System (NARS) using its native narsese language. The narsese code is shown in Listing
2.1. The causal relationships are encoded using the implication operator and by describing
both the positive (when an event happens) and negative (when an event doesn’t happen) cases

30

Chapter 2. Background Causality

for all the causal relationships of the diagram.

Listing 2.1: Firing squad example in narsese

<<(*,{CO},order) --> give> ==> <(*,{C},order) --> give>>.
<(--, <(*,{CO0},order) --> give>) ==> (--, <(*,{C},order) -->
give>)>.

<<(*,{C},order) --> give> ==> <(*,{A}, {prisoner}) --> shoot>>.
<<(*,{C},order) --> give> ==> <(*,{B}, {prisoner}) --> shoot>>.

<(--, <(*,{C},order) --> give>) ==> (--, <(*,{A}, {prisoner})
--> shoot>)>.
<(--, <(*,{C},order) --> give>) ==> (--, <(*,{B}, {prisoner})

--> shoot>)>.

<<(*,{A}, {prisoner}) --> shoot> ==> <{prisoner} --> [dead]>>.
<<(*,{B}, {prisoner}) --> shoot> ==> <{prisoner} --> [dead]>>.
<(&&, (--, <(*,{A}, {prisoner}) --> shoot>), (--,
<(*, {B}, {prisoner}) --> shoot>)) ==> <{prisoner} -->
[alive]>>.

The test now entails asking different questions from the three rungs of the ladder of cau-
sation. The easiest queries are those that inquire about associations, which can answered by
looking at associations alone. Examples of this types of queries are: “The Court order was
given, what is the status of the prisoner?”, “The prisoner is alive, was the Court order given?”
and “Soldier A fired, did Soldier B fire?”. These questions correspond to the following prob-
ability statements: P(D | CO = 1), P(CO | D = 0) and P(B | A = 1); the conditional
probabilities using data generated by the firing squad system are enough to give an answer
without even using any causal model.

This type of queries, that can be answered by looking at associations in observed data, are
also the only type of queries that current machine learning algorithms can hope to answer in
the mini-Turing test. Machine learning systems, including deep learning neural networks and
the like, work by fitting some function to the observed data, not very differently than what is
also done in statistics (Pearl and Mackenzie, 2018). These Al systems do not use causal models
and only receive observational data for some phenomenon, therefore are unable to answer
queries about interventions or counterfactual statements.

Obviously, NARS is very well capable of answering these types of questions too, and its
responses are shown in Listing 2.2, 2.3 and 2.4.

Listing 2.2: Q1: The Court order was given, what is the status of the prisoner?

<(*,{CO0},order) --> give>. :|:

<{prisoner} --> [?1]>?

Answer <{prisoner} --> [dead]>. %1.00;0.38%
Answer <{prisoner} --> [dead]>. %1.00;0.40%

Listing 2.3: Q2: The prisoner is alive, was the Court order given?

<{prisoner} --> [alive]>. :|:

<(*,{CO},order) --> give>?

Answer <(*,{CO},order) --> give>. %0.00;0.15%
Answer <(*,{CO},order) --> give>. :-264: %0.00;0.25%

31

Chapter 2. Background Causality

Court Order (CO)

Captain (C)

A=1 C> B

Death (D)

Figure 2.2: Causal diagram of the firing squad scenario after setting A = 1.

Listing 2.4: Q3: Soldier A fired, did Soldier B fire?

<(*,{A}, {prisoner}) --> shoot>. :]|:

<(*,{B}, {prisoner}) --> shoot>?

Answer <(*, {B}, {prisoner}) --> shoot>. %1.00;0.21%

Answer <(*, {B}, {prisoner}) --> shoot>. %1.00;0.28%

Answer <(*, {B}, {prisoner}) --> shoot>. %1.00;0.28%

Answer <(*,{B}, {prisoner}) --> shoot>. %1.00;0.29%

Answer <(*, {B}, {prisoner}) --> shoot>. %1.00;0.29%

Answer <(*,{B}, {prisoner}) --> shoot>. :-7899: %1.00;0.56%

Next, the test can include questions about interventions on the causal diagram of Figure
2.1. Examples of such queries are: “If Soldier A fires on its own initiative, what will be the
status of the prisoner?”, “If the Captain refuses to give his command, what will soldier B do?”
and “If Soldier B decides what to do on a whim, what will be the status of the prisoner?”.
These questions can be expressed in probability statements thanks to Pearl’s do operator:
P(D | do(A = 1)), P(B | do(C = 0)) and P(D | do(B = U{0, 1}) respectively. An
intervention changes the underlying causal diagram by erasing all incoming arrows of the
affected node(s) and by setting the value of the node’s variable as specified by the do operator.
For example, the intervention that sets the value of A to 1 (the intervention expressed by the
first query above) results in the causal diagram shown in Figure 2.2. It can be noted that
these questions are very easy to answer, but that is because humans are very good at causal
reasoning (Pearl and Mackenzie, 2018). When it comes to trying to ask these questions to
NARS, it turns out that there’s a lack of proper terms in narsese to even pose them in the
first place. That is because to ask questions about interventions, the machine needs to be able
to break the rules, by blocking incoming influences on the affected variable and then setting
it to some arbitrary value (Pearl and Mackenzie, 2018), which is not something that can be
encoded in narsese for the time being.

One question that can be raised at this point is: “Isn’t the status of the prisoner the same
whether Soldier A is ordered to shoot or Soldier A just fires on its own initiative?” In other
words, what is the difference between seeing and doing? Is P(D | A =1) = P(D | do(A =
1)? That depends. The equality holds if there is no confounding between the variables in-
volved. Using the firing squad example, seeing the Captain give his command and making

32

Chapter 2. Background Causality

Figure 2.3: Causal diagram explaining the correlation of ice cream sales I with the crime rate
C' through the confounding factor W.

him give is command is the same for the prisoner’s Death, because there are only causal paths
from C to D and no confounding variables. This is different in the case of Soldier A, because
there is a back-door path A-C-B-D, with C and B acting as confounders. Obviously, if A is
observed to be one or if A is made to be one the prisoner is dead in both cases, but on the
other hand, while seeing A to be zero means that the prisoner will be alive (because B is zero
as well), setting A to zero does not tell that the prisoner will be alive with certainty, because
possibly the Court order was given and Soldier B shot him. To clarify this discussion, consider
the causal diagram in Figure 2.3. This diagram represents a famous example of confounding,
where a strong association between Ice cream sales (I) and the Crime rate (C) was found. Such
association can be explained, in a simplified way, by considering the Weather (W) as a com-
mon cause of both. When observing a high volume of Ice cream sales a simple application of
regression can return the value of the Crime rate. But, on the other hand, setting the value
of the ice cream sales volume to some arbitrary amount, e.g. 0,°> doesn’t not allow to infer
anything about the Crime rate, which does not depend at all on Ice cream sales but instead
is a function of the Weather. Note that even if the value of a variable is set by someone else,
or even by something not human, it is still an intervention as long as the variable being set is
shielded by any causal influence from other variables that would otherwise affect it, which is
evident by the definition of intervention itself.

Lastly, the test can include counterfactual questions, for example: “Suppose that the pris-
oner has been shot, would he or she be alive had Soldier A not fired?” which corresponds to
the probability P(D | CO =1,C =1,A=1,B=1,D = 1,do(A = 0). A counterfactual
question involves the observation of a world where all variables have been set (“Suppose that
the prisoner has been shot,”), a question about the value of a variable (“would he or she be
alive”) and a statement about a different, fictional world where something happened differ-
ently (“had Soldier A not fired?”). If in the observed world the prisoner has been shot, all
variable values are known by the rules of the described system: all variables are set to one.
Then by means of the do operator the value of A is set to zero and now the question asks about
what would the value of D be under these assumptions. It follow that Soldier A not shooting
the prisoner would still result in Soldier B shooting, and therefore the prisoner’s Death would
still occur. This counterfactual question, just like for the intervention’s case, cannot be posed
to NARS because of the current impossibility in expressing the do operator in narsese.

*For example, a policy maker banning the sale of ice cream

33

CHAPTER 3

Task theory

In this chapter we introduce our work on task theory. Our main contributions towards this
includes: An extension of causal diagrams to accommodate the various features of task-
environments, including partial observability and manipulability of variables (Section 3.1); a
series of foundational principles for moving towards the task theory we envision (Section
3.2); a measure of a task’s ‘complicatedness’ that is objective and independent of any
specific learner (Section 3.3) and (Section 3.4) a measure of difficulty of a task’s execution
that is dependant on both the task’s intricacy and the performing controller. Sections 3.4.2
and 3.4.3 describe a series of factors that are independent of a task’s intricacy and that can
affect the difficulty of learning and performing a task by a controller. In the last sections we
relate some ideas on how to decompose a task into sub-tasks (Section 3.5), how to compose
multiple tasks into a single task (Section 3.6) and a task-theoretic point of view on the learning
process of an agent (Section 3.7).

Before we proceed, a clarification is in order about the two points of view of a task, the
designer’s perspective and the agent’s (learner’s) perspective. A task can be viewed from the
designer’s point of view, in which case everything about the task is completely known and
specified. By ’designer’ we mean the agent (typically human) that decides what the task is.
The ‘agent’ is the learner that is supposed to learn and perform the task. The designer specifies
the variables, the mechanisms and the various goals and constraints, and therefore, just like a
divinity, it can be assumed that whatever is being defined is an objective and incontrovertible
fact about the real world. It is up to the designer, then, to ensure that their definition of the
task matches the actual world they inhabit, and that whatever choices they made in the task
description are valid and reasonable representations of real world entities. The other point of
view is that of the agent that actually has to carry out the task. The agent has only a limited
perception of the world described by the task, as it is only able to perceive the observable
variables. In this case, whatever knowledge the agent may obtain through the process of
learning the task has no certainty of being correct: it is in effect defeasible knowledge, because
at any time, any learned fact could be proven wrong by additional experience. In the rest of
this section it is always assumed the designer’s point of view of the task.

34

Chapter 3. Task theory An extension of structural causal diagrams

3.1 An extension of structural causal diagrams

Owing to the Al background of Pearl, he envisioned the structural causal models described in
the previous chapter as a useful basis for the development of generally intelligent machines
capable of causal reasoning (Pearl and Mackenzie, 2018), in particular by means of a causal
inference engine module (Pearl and Bareinboim, 2014, Figure 1). While AGI-aspiring systems
following this approach have yet to surface, Peters, Janzing, and Schoélkopf (2017) describe
various applications of SCMs in the fields of machine learning and deep learning. This thesis
is not concerned with the applications of causal models for the development of intelligent
systems; rather, with their use in modeling tasks in a way that is independent of any specific
learner. For this purpose the structural causal models and related causal diagrams described
by Pearl (2009) and Peters, Janzing, and Schélkopf (2017) need to be extended in a number of
ways to be useful in a task theory for artificial intelligence.

The foremost issue with causal calculus, which would come handy when trying to derive
causal effects in a causal diagram, is that it requires huge amounts of data, possibly even infi-
nite amounts, to be applied effectively. Such abundance of data is rarely the case for real world
scenarios, as learners are expected to work under the assumption of insufficient knowledge
and resources (AIKR) (Wang, 2012). Another issue with the approach of causal calculus is that
the temporal component of causation is overlooked altogether. This again clashes with AIKR,
as time is a fundamental resource for any concrete task to be executed in the physical world.
For these reasons, the approach of causal calculus seems ill-suited to be used as an effective
reasoning tool in any real time physical world scenario.

There are also a number of features of tasks we would like to represent in causal diagrams.
The observability of some variable by the controller might be influenced by a number of
factors, both inside and outside the task. These factors might act in different ways across
time, and therefore the observations of a particular variable might improve or worsen in
quality over time, possibly even as consequence of the controller’s action. A variable might
even become unobservable at some point, for example if the actions of the controller bring it
outside the field of view of its sensors.

A similar argument can be made for the manipulation of variables. Unlike causal calculus,
where a do operator can be applied on any variable, in the world of physical tasks controllers
are usually constrained on some relatively small subset of variables that can be arbitrarily set
to values in their domain. Furthermore, the effect of a manipulation might be different across
time, depending on the current context of the manipulated variable and its neighbours. For
example, a manipulation aimed to change the position of an actuator might have a different
outcome if such actuator is already constrained in some position or not.

A task is considered to be finished when the goal variables assume the appropriate values
as specified. Therefore causal diagrams should include a way to specify which variables are
the goals, and how such goals can be verified by the executing controller.

The execution of a task implies the depletion of a certain amount of resources. Time, as
already mentioned, is an important resource, but not the only one. Energy would be another
resource which we would want to model into causal diagrams representing tasks. Every ma-
nipulation and observation in a task can be thought of as costing a certain amount of energy.

3.1.1 Variable attributes

The variables that make up a structural causal model represent different quantities of interest
of the phenomenon being modelled. Apart from that, they behave essentially the same: any
of them can be acted upon using the do-operator and be observed, and this is true at any

35

Chapter 3. Task theory An extension of structural causal diagrams

time step. When modelling a task, structural causal models have to extended to allow for
time-dependent partial observability and manipulability of variables.

Therefore three types, or rather attributes, of variables are to be included into causal di-
agrams: manipulatable variables, observable variables and goal variables, as introduced by
Thorisson and Talbot (2018b). Every variable of an SCM can be assigned to any one of these
types, or none of them, in which case the variable is generally referred to as factor.

Manipulatable variables

A manipulatable variable, or ‘manipulatable’ for short, is a variable that a controller can
act upon. Using Pearl’s terminology, that would mean that the controller can apply the
do-operator to it and effectively set its value to any element of the variable domain. For a
physical task a manipulatable variable is usually the physical interface between the mind of
the agent and the actuator carrying out the issued commands. For example, a very simple
robotic arm actuator could be modelled by a manipulatable variable whose domain would
include { Move up, Move down, Move left, Move right}. The domain of a manipulatable
variable could be as simple and as complex as the physical actuator can allow, and nothing
prevents an actuator to be actually controlled by multiple manipulatables, each setting a par-
ticular parameter for the command to be performed.

It is important to not conflate the manipulatable variable with the actuator it affects; the
signal sent to a finger to control its movement is different from the finger itself: while the
signal carries specific information about a possibly fine-grained command the finger has to
perform, the finger is characterized by an own set of variables specifying, among other things,
its position in space, which cannot be arbitrarily set but follows certain laws of physics and
constraints, including time and energy. To carry out the command the finger spends a certain
amount of energy and takes a certain amount of time, therefore it isn’t possible to set those
values arbitrarily as it is the case with a manipulatable variable.

Manipulatables need not necessarily be tied to a controller’s actuators. In fact, their usage as
command interfaces to actuators is their finest possible level of detail, but manipulatables can
also be used model more complex, high-level operations which may involve multiple actuators
and a great many deal of other variables and mechanisms. They can be used to represent entire
sub-tasks and sub-goals, precisely, those sub-elements of the task that a controller already
knows before the task and can perform to an arbitrary level of precision. For example, a
controller which knows how to open and close doors, might have a manipulatable variable
with domain {Open door, Close door} directly affecting the variables describing a door.
Any part of the task that a controller already knows should not be part of the task proper and
can be modelled with an appropriate manipulatable. In the case where a controller knows
nothing about a task, it is at least assumed that it knows how to control its actuators, and
therefore in those cases the manipulatables correspond exactly to the actuator interfaces.

It could be objected that by doing so, the objectivity of the task description is lost, because
now the task depends somehow on what the learner knows how to do, which could be some-
thing that depends on the specific controller and its experience. To overcome this issue, it
must be considered that it is always possible to describe a task by only using the actuator
command interface, which depends solely on the body of the controller and thus on the task.
Tasks whose manipulatables describe higher level action can always be re-specified to only
include the low level actions made available by the actuators to the controller.

In the causal diagram, a manipulatable variable has at least one outgoing arrow to another
(non-manipulatable) variable that represents the physical entity it is affecting. The affected
variable might be further influenced by other variables in the task, which might constrain

36

Chapter 3. Task theory An extension of structural causal diagrams

the degree of manipulation originating from the manipulatable. For example a robotic leg
controlled by one or more manipulatable variables might not be able to carry out the issue
commands if an obstacle is constraining the leg’s movements. This approach allows the par-
tial manipulability of variables: the manipulability of variables is time-dependent and also
depends on the current state of the task.

Manipulatable variables have no incoming arrows in the SCM. Indeed, only the controller
can affect these variables and the controller is never part of the task.

Observable variables

An observable variable, or ‘observable’ for short, is a variable whose value can be accessed by
the controller. In other words, the values that the observables hold at a given time step are
the same values that the controller receives in input at that time from its physical sensors. It
is important to stress here that the observable variable does not correspond with the entity
that is observed: the former is the result of a measurement process performed by a physi-
cal sensor and the latter is the actual physical entity subject to measurement. For example,
the observations we perform with our eyes (the sensor) are of quite a different nature from
the actual object that is being observed by measurement of the light that bounced off from
it. The brain further processes data received from the optic nerve (without such additional
processing, we would see the world “upside-down’) before our consciousness receives the fa-
miliar visual representation of the outside world. But, as this process implies, what is being
seen does not correspond at all with what is out there, even though it should be as precise an
approximation as it can be.

An observable variable therefore is a representation of a real world entity that comes into
being by means of the sensor(s) measuring it. A very good sensor can guarantee a certain
fidelity of representation of what it measures and possibly provide some error bounds which
might or might not be known to the controller, while a not as good sensor might only provide
a coarse or even a very far off measurement. Furthermore, the precision of a sensor might
vary over time, depending on factors both inside and outside of the task.

This approach to observability is in effect a form of epistemological solipsism, as the only
information available to the controller is that which is sensed while the physical phenomena
actually described in the task are forever out of reach. An objection to this approach might
be that if a controller can only ever perceive the world through its sensors, how can it affect
it and verify the consequences of its actions? But this objection poses no problem at all: the
controller only ever needs to affect its manipulatable variables (which are not observable, in
the same way that a human does not have to observe the signals the brain is sending to their
muscles to effectively control them) and verify their effect through its observables, which of
course also include sensory information about the actuators themselves.

In the causal diagram, an observable variable has at least one incoming arrow from the
(non-observable) variable representing the physical entity it is observing. Further incoming
arrows can be drawn from other non-observable variables representing other factors that
may affect the resulting observation by the sensor. These additional factors allow the partial
observability of variables: they might improve or impair the quality of the observation, or
even disallow it completely. This way the observability of a variable is time-dependent and
might change over time during the execution of the task.

Observable variables have no outgoing arrows in the SCM. As a simplifying assumption,
observation does not affect in any way the entity being observed nor any other variable. (The
only context where this assumption is obviously violated is at the quantum level, which is
out of scope for a task theory of practical use.)

37

Chapter 3. Task theory An extension of structural causal diagrams

Goal variables

A goal variable is a variable whose value needs to be in a certain range for the task to be
considered successfully completed. Likewise, a negative goal variable is a variable whose
value needs to be in a certain range for the task to be considered failed. A task may include
any number of goal variables, and a task is successfully completed when all goal variables
present the appropriate values. In the same way, a task might include any number of negative
goal variables and the task is considered failed if any negative goal variable presents its value
in the specified range.

3.1.2 Time, energy and other resources

Since our task theory is primarily concerned with tasks in the physical world, the scarcity of
resources must always be taken into account. For every physical task, these resources always
include, at least, time and energy.

Structural causal models and the related causal diagrams can already be used to model time
series data (see Section 2.3.2). In particular, any causal diagram can be represented either as
the full time graph or as the summary graph, and from now on every causal diagram presented
in this thesis will fall in either of these two categories. Therefore time is explicitly modelled
as part of the task itself.

The causal models that explicitly deal with time include the possibility of instantaneous
effects. While in general instantaneous effects are a physical impossibility (because any causal
effect necessarily takes some time ¢ > 0), they can be considered if the time required for the
effect to take place is lower than the shortest detectable time frame by the controller’s sensors
(which are part of the task and therefore it is purely a physical consideration independent of
any specific controller).

Energy, on the other hand, can be understood as a currency spent to set the manipulatable
variables. Whenever a controller wants to set the value of a manipulatable, a certain amount
of energy can be detracted from the currently available energy. Furthermore, at every time
step energy can be deducted as expense for the observations or just the maintenance of the
controller and its body. A similar approach can be followed for any other type of resource
that take part in the task.

3.1.3 Example

This general example (Figure 3.1) shows how our extension of causal diagrams can be used
to model a task. For simplicity we show the diagram in the summary graph representation
(see Section 2.3.2). The manipulatable variables A, B and C are marked in blue and directly
affect the variables I and J of the task. Note that variable [is also directly affected by J:
therefore if I represents a particular physical property of an actuator, specifying for example
the angle or speed of movement, the influence of J might affect it despite J not being a
manipulatable itself. Variables I to N are unobservable, not manipulatable and non-goal
variables, which represent different and various properties of interest of physical entities in
the task. Variables X and Y, marked in red, still represent properties of physical entities but
are also goal variables, as their values need to be (or not to be) in a certain range for the task
completion (failure). Variables marked in green are instead the observable variables, and their
values are the sensory inputs of the controller assigned to execute the task. Notice that, for
example, variable I’ is not only determined by the variable that is the measurement of (I),
but is further affected by K, which might influence the quality of sensory observation. The

38

Chapter 3. Task theory An extension of structural causal diagrams

@
t
O

e le)Ny

Figure 3.1: An example of summary graph representing a task. Blue nodes represent the
manipulatable variables, green nodes the observables and red nodes the goal variables. All
other nodes are factors.

remaining variables, marked in black, are the unobservable, non-manipulatable factors that
make up the physics of the task.

3.1.4 The cart-pole task

This concrete example shows how the cart-pole task (Barto, Sutton, and Anderson, 1983) can
be modelled using our extension of causal diagrams. In this task a cart has a rigid pole attached
with a hinge mechanism. The cart is free to move on the x-axis along a one-dimensional track,
while the pole can swing back and forth vertically on the cart. The goal of this task is to
prevent the pole from falling over, and the only available action for the performing controller
is to apply a force to push the cart either left or right. The cart-pole setup is visualized in
Figure 3.2.

The summary graph for this task is shown in Figure 3.3, while the full time graph is shown
in Figure 3.4. The actionable variable Action can be set to either —10 or +10, to push the cart
left or right respectively. The observable variables are:

« z': the position of the cart on the track;

39

Chapter 3. Task theory An extension of structural causal diagrams

M | F

© O

Figure 3.2: A schematic of the cart-pole task (Krishnavedala, 2012).

El

Figure 3.3: Summary graph of the cart-pole task. Note that cycles are allowed in summary
graphs, but the corresponding full-time graph is acyclic.

40

Chapter 3. Task theory An extension of structural causal diagrams

— T

) S

Figure 3.4: Full-time graph of the cart-pole task. To avoid unnecessary clutter, the observable
variables are shown as smaller circles inside the variable node they observe.

41

Chapter 3. Task theory Principles for a task theory

. v': the velocity of the cart;
« @': the angle of the pole on the cart;

« w': the rate of change of the angle of the pole.

The goal variables are z and 8: the cart must stay within 2.4 units of the initial position
and the angle of the pole must stay within 12 radians of the perfectly vertical position. Other
constants in the task are the gravitational force g = 9.81, the mass of the cart M = 1.0, the
mass of the pole m = 0.1 and the length of the pole [= 0.5.

The mechanisms at play in the task are described by the following structural equations:

3 _ (M +m)-g-sinb; 1 — (cosb; 1 - (Actions 1 +m-1-w? | -sinb; 1)))
£ %-(M—I—m)-l—m-l-cos29t,1
(Actions_1 +m -1 (w? | -sin;_; — Wy - cos 6:—1))

M+m

ay =

U =V 1+ 0y - dt

Ty =T¢ 1+ V- dt

we = w1 + Wy - dt

0: = (((fs—1 +wt - dt)+7) mod (2-7)) —7

3.2 Principles for a task theory

In the previous section we described how causal diagrams can be used to represent tasks. For
the purpose of specifying a task theory, in this section we can now lay out some foundational
principles of the tasks we want to represent and on which our task theory will rest on.

A problem is specified by the initial state, goal states and failure states, and by task is
meant a problem assigned to a particular agent (Thorisson, Bieger, et al., 2016). Colloquially,
a task is usually identified by its goals. The task of “doing the dishes” is usually thought of
in terms of the end result — whether the dishes are finally clean or not is all there is to the
task. This familiar definition is lacking first and foremost in forgoing any specification of
the environment, that is the particular setting and context where the task is to be executed.
Doing the dishes at home is one thing, but doing the dishes in space without gravity can be
an entirely different experience.! In fact, as previously stated, the task and the surrounding
environment are so tightly coupled that drawing a distinction between the two is arbitrary
at best and impossible at worst (Thérisson, Bieger, et al., 2016; Bieger and Thorisson, 2017).
For this reason, it is more proper to talk about a task-environment, and that is what is really
meant in this thesis when the term task is used (see Glossary). Furthermore, the body of the
controller has a special status because it acts as the interface between the controller and the
environment. The body can be understood as a set of sensors providing sensory inputs and
actuators executing the controller’s commands. A task can change considerably according to
the body that is provided to the controller.

1. > The environment, including the body of the controller, is part of the task.

A possibly non-obvious consequence of considering the environment as part of the task is that
the controller’s body, and thus its own actuators and sensors, are part of the task too. There-
fore, maintaining the running example of doing the dishes, the task can change considerably

lExample from K. R. Thérisson, personal communication, 2020.

42

Chapter 3. Task theory Principles for a task theory

if instead of being able to see the dishes the controller can only rely on tactile information.
Likewise, doing the dishes using robotic arms is one thing while achieving the same objective
by controlling a swarm of thousands of nano-robots is a totally different thing.

A more subtle factor to consider is the level of detail of a task. Any phenomenon in the
world can be described at different levels of detail, from highly detailed fine-grained descrip-
tions to very abstract coarse grained ones, and tasks are no exception. Task descriptions can
be made arbitrarily more precise, going from the familiar human-friendly descriptions that
intuitively come to mind for most tasks to overly complex descriptions at the atomic or even
sub-atomic level.

2. > The level of detail is part of the task.

In other words, any task is limited to its level of detail, and even if the same task is presented at
another level of detail, it is not the same task. For example, an electronic circuit implementing
a logic gates task can be described at the level of its electronic components, at the even lower
level of the chemical reactions in its circuits or at the higher level of the implemented logic
circuit. The task of obtaining some output in such circuit is very different according to the
level of description being used, because effectively the variables and the mechanisms changed
together with the level of detail. Therefore variations in the level of detail effectively result
in different tasks.

Given the various choices of different levels of detail, which level of detail is appropriate
for some learner in some context? For a human learner, what is it that makes a level of
detail more ‘human-friendly’ than alternatives? Since the body of the controller is part of the
task, the lower bound on the level of detail of a task would be exactly that which is induced
by the available sensors and actuators. The actuators define the granularity of what can be
manipulated while the sensors define the granularity of what can be measured.

3. > A controller’s sensors and actuators define the limits of relevant spatio-temporal task
detail.

Therefore, the finest possible level of detail for a task depends necessarily on what the body
allows the controller to observe and manipulate, and tasks described at more fine-grained lev-
els of detail than what the controller’s body allow would be experienced by the controller at
coarser level of detail, in accordance with what is made possible by its body. Since, in the
human adult case, the sensors include the eyes (providing the visual information) and skin
(providing the tactile information) and the actuators include arms and hands, it is intuitive
to think of doing the dishes in a level of detail that matches their capabilities. Humans can-
not naturally perceive individual atoms and even less manipulate them, therefore doing the
dishes is not usually considered at any finer level of detail than that made possible by the
human body. Of course physicists are well able to see and manipulate atoms with the appro-
priate instrumentation, therefore there might well be tasks naturally described at the atomic
or subatomic level of detail; doing the dishes by a normal human body is just not one of them.
Furthermore, considering the way observables are dealt with in this framework (see Section
3.1.1), a task described at such fine grained level of detail such that it is effectively out of
reach for the controller’s sensors would indeed be treated by the controller as if described at
a coarser level of detail. Even if there were thousands of variables describing some entity, a
sensor might only be able to observe such entity in terms of a handful of them, and for the
controller receiving such sensory information that is all there is of the task, being forever
locked out of observing the true essence of the task which lays beneath what is observable by
its own body. This situation is visualized in Figure 3.5. The same variables can be perceived

43

Chapter 3. Task theory Principles for a task theory

(a) A situation where variables A to G have (b) A situation where variables A to G cannot
corresponding observables in A’ to G', be- be appropriately distinguished by the avail-
cause the appropriate sensors are available for able sensors, and therefore there are only two
their observation. observables perceived by the controller.

Figure 3.5: An example where (a) the sensors are able to provide observables for all the vari-
ables and (b) the sensors are unable to provide observables for all the variables.

individually by corresponding observables if the sensors allow (Figure 3.5a) or they could be
coalesced in a smaller number of observables if the sensors are unable to distinguish them at
such degree of granularity (Figure 3.5b). Similar considerations also apply to manipulatable
variables.

It is always possible to add to the description of the task by inserting new variables and
mechanisms to enlarge the scope of the task description. The variables and mechanisms in-
cluded in the description of the “doing the dishes” task, for example, might include a complete
specification of the kitchen, or the home, and in principle of anything that exists in the uni-
verse. All this additional information seems useless, and in fact it is, for there certainly is no
need to factor in the movement of celestial bodies or what is happening outside on the street
to do the dishes. But humans instinctively know all of this because they are already familiar
with this task and with most other tasks that exists in the real world, and therefore know
which variables are relevant and which are not. Such assumption would not hold for an Al
system, and even less so would hold for an AGI-aspiring baby machine that knows nothing
besides its seed.

4. >> A task is unaffected by variables which do not constrain its solution space.

Let’s consider an example where such human intuition about the relevance of variables
could not apply. The goal is to turn on a light by toggling the correct combination of three
switches. If the task includes only three switches, it would therefore take at most eight tries to
find such combination. Now consider this very same task, but also including the description
of 997 more switches which have no causal relation to the light. Even though the actions to
carry out the task are the same as before, the task now requires additional effort to be executed:
now a controller would also need to find which are the relevant switches among a thousand
possible candidates. Even if it were possible to see the wiring and recognize which switches
are connected to the light and which aren’t, the issue of finding the relevant switches is made
easier but is nonetheless present. Only with time and experience a controller would eventually

44

Chapter 3. Task theory Intricacy

start to learn that some switches are, in fact, irrelevant for the task and in future situations
where a similar task occurs it could use such experience to narrow down its attention to what
it believes are the relevant variables. A general understanding of the world greatly helps
reasoning about which variables are useful and which are not but such reasoning doesn’t
apply in the case of completely novel phenomena, or when there’s no previous experience
(and understanding) as in the case of (machine or human alike) babies. Nonetheless, from
the designer’s perspective the presence of such superfluous variables does not change the
task, because they do not constrain the solution space of the task, and therefore are of no-
importance to execute the task. These variables might make a task harder to learn for one
controller (e.g. a controller unfamiliar with the task) but they might not affect the performance
of another controller at all (e.g. a controller familiar with the task which can thus recognize
superfluous elements and ignore them). The set of variables and causal relationships whose
understanding is required to carry out the task remains the same regardless of how many
additional elements are added to the task description.

3.3 Intricacy

Having set forth the foundational principles, we can now turn to the issue of defining a mea-
sure that relates the complexity of the task in an objective way, that is in a way that does not
depend on any specific learner to which the task may be assigned. By “complexity” here we
do not refer to the classical computer science notion of the term, but rather to the intuitive
concept of “complicatedness,” “complexness” or “convolutedness.” This measure should be
grounded in the physical properties of the task, and in particular we chose to ground it in
measurable causal relations/mechanisms, because it is through such mechanisms that actions
have effects, things get done, and thus tasks can be executed. From this measure it will then
be possible to talk about the subjective difficulty of a task for some specific controller (Section
3.4).

Definition 3.3.1 (Intricacy of a task T'). The intricacy of a task T" is defined as the measure
of a task’s “complexity” based purely on physical, measurable parameters. It can be measured
in either of the following ways:

1. The minimal number of relational models required to capture the subset of RY* which
includes only relations on the causal path to some goal.?

2. The number, length and type of mechanisms of causal chains that affect observable
variables on a causal path to at least one goal.

3. The size of the smallest solution tree that can be constructed where all nodes are ma-
nipulatable variables.

4. Size of the solution space relative to the number of possible action sequences.

Intricacy thus defined is a property that relates to the physics of the task. Intuitively it is a
measure of what physical mechanisms are in place that need to be known by any intelligent
being, whatever is its architecture, knowledge or capabilities to perform the task in the given
environment (inclusive of the controller’s body). The task’s intricacy is invariant on the initial
values of the task’s variables.

The models referred by this definition are of the type described in Section 2.1 and by JR%” is meant the set of
inward facing (causal) relations of the task (see Section 2.2).

45

Chapter 3. Task theory Intricacy

The preferred measure® of intricacy is the one given by (1). The models referred by this
definition are of the type described in Section 2.1 and by SR¥" is meant the set of inward facing
(causal) relations of the task (see Section 2.2). This minimal number of models is an objec-
tive measure which depends solely on the particular specification of the task (inclusive of the
controller’s body), and captures all the relevant parts of the task proper, leaving out possibly
unnecessary details and relations that are superfluous for the task. This means that, for ex-
ample, tasks which contain superfluous variables and relations (as described in Section 3.2)
have the same intricacy of the same task abridged of all superfluities. The steps to obtain this
minimal number of models entail the identification of all the relevant causal chains, turning
them into relational models and then quantify them. A process for generating these models
could for instance be the modelling process used by AERA (Nivel, Thoérisson, et al., 2013),
which can produce them in an unsupervised learning mode when given only the top-level
goal(s) of a task.

The second measure comes directly from the level of description of causal diagrams. In
this case we take into consideration the concept of causal chain (or path), that is a sequence
of variables connected by arrows such that for each pair of subsequent variables (V;, V;) in
the sequence there is an arrow starting in V; and ending in V;. Intricacy can then be measure
by taking in consideration the observable variables of the task that lay on causal chain that
contains any observable goal variable. The three parameters of concern to this definition are
(a) how many distinct such causal chains there are, (b) how long are they in terms of number
of variables involved and, (c) the complexity of the functions that define the mechanisms on
these causal chains. A possible way to characterize the complexity of these functions is to use
the Vapnik-Chervonenkis dimensions (VC-dimension). The VC-dimension associates a value
to different types of function classes, for example, constants have a VC-dimension of 0, step
functions have a VC-dimension of 1, linear functions in d variables have VC-dimension of
d + 1, and generally other non-linear ‘complex’ functions have higher values associated than
the ‘simpler’ linear or step functions. An even better measure for function complexity would
be the Rademacher complexity, which includes the Vapnik-Chervonenkis dimension bound.
A class of functions with a lower Rademacher Complexity can be understood to be easier to
learn (in the context of statistical learning)®.

The third measure considers the size of the smallest tree of atomic actions, that is, the
values being set in the manipulatable variables, that leads to state where the task in success-
fully finished. The obvious drawback of this approach is that, unlike other approaches, the
size of this tree depends on the specific instance of the task, that is it depends on the actual
initial values of the variables that make up the task. Therefore this measure of intricacy can
be used following the usual approach in computer science of asymptotic analysis considering
the best, average and worst case scenarios.

The fourth measure of intricacy was initially proposed by Thorisson, Bieger, et al. (2016).
By size of the solution space is meant the total number of task states in the solution space, with
each state identified by distinct value assignment to all of the task variables. The number of
possible action sequences would be the total number of possible sequences of atomic actions.
It is related by Thorisson, Bieger, et al. (2016) that such a measure would at least convey the
rate of success of a random performer on the task, or in simpler terms, allowing prediction of
how likely any controller is to fail the task.

By “preferred measure” is meant that is it the measure of intricacy that we are impartial to. The provided
measures of intricacy are ordered by how powerful we think they are according to our research.

*For more information on the Rademacher complexity, see http://www.cs.cmu.edu/~ninamf/
ML11/lect1117.pdf and https://www.cs.princeton.edu/courses/archive/
springl13/cos511/scribe_notes/0305.pdf

46

http://www.cs.cmu.edu/~ninamf/ML11/lect1117.pdf
http://www.cs.cmu.edu/~ninamf/ML11/lect1117.pdf
https://www.cs.princeton.edu/courses/archive/spring13/cos511/scribe_notes/0305.pdf
https://www.cs.princeton.edu/courses/archive/spring13/cos511/scribe_notes/0305.pdf

Chapter 3. Task theory Difficulty

3.3.1 Some properties of intricacy

We can now look at some implications of an intricacy measure, as discussed above, in light
of its target application and domain of use.

Controllers have an upper bound on the amount of intricacy they can handle in a
task Under the assumption of insufficient knowledge and resources, highly intricate tasks
might be outside the capabilities of some controller to be learned, performed or both. The
more intricate a task is, the more models are necessary to execute it; therefore if a controller
does not possess the appropriate cognitive capabilities to handle the intricacy of the task (e.g.
it cannot handle any more than X models at the same time in its working memory), it would
not be able to learn the task without some outside support.

Intricacy is inversely proportional to the size of the solution space An highly intri-
cate task should necessarily have a restricted solution space relative to all the possible action
sequences. Otherwise it could counter-intuitively be possible for a random performer to finish
the task more quickly (and easily) than an agent actually learning the task.

Intricacy is invariant under the initial conditions of the task The intricacy of a task
remains the same across the full spectrum of possible initial values for the task; in other words,
it is invariant across the possible instantiation values of a task family. This follows directly
from the fact that intricacy is only concerned about the (causal) relationships in the task and
not about specific variables and their values.

The lower the level of detail of a task, the higher its intricacy becomes. Tasks de-
scribed at a very fine-grained level of detail are necessarily more intricate than tasks described
at more coarse-grained levels of detail, because they would include a greater number of causal
relationships. For example, a task described at the atomic or sub-atomic levels of description
would be extremely intricate, as it would include the specification of all the involved mecha-
nisms for each particle. The causal diagram for such a task would be likewise intractable in
its complexity, for the number of nodes and arrows between them. Despite the fact that two
tasks might indeed have the same macro-level goal, a description in a more coarse-grained
level of detail can make all the difference in the tractability of the task for a controller.

3.4 Difficulty

From the foundational principles, in particular the principle that related the effect of super-
fluous variables on the task, it follows that the difficulty of executing any particular task is
not uniquely determined by the task itself (i.e. its intricacy), but also depends on the perform-
ing agent. Besides previous experience with the task, some controller might be (cognitively)
better or worse suited to perform the task for a plethora of reasons: it could have trained on
similar tasks or on tasks which share some of the variables and relationships with this task,
it could be quicker (or slower) at learning associations and cause-and-effect relationships, it
could have a better (or worse) precision in controlling its actuators, and so on. Controllers,
and by controller we mean effectively the mind of the intelligent system, might have either
the experience or the architecture that is particularly well-suited (or ill-suited) for the task
at hand, or for a type of tasks in general, or for any task at all, for reasons completely inde-

47

Chapter 3. Task theory Difficulty

pendent of the tasks themselves. Difficulty must therefore be a cross product of a task and a
controller.

Given a task and an intelligent controller assigned to execute it, it is possible to talk about
a measure of how difficult that task is for that specific controller.

Definition 3.4.1 (Difficulty of a task T for a controller C). The difficulty of a task T as-
signed to a controller C' is defined as the cross product of the task’s intricacy and the level of
understanding of the performing controller: {T' x C}.

This notion of difficulty can be considered to be the effective intricacy of a task for a specific
learner. The effective intricacy of a task only takes into consideration the sub-parts of the task
that the learner does not already know; in other words it’s the intricacy of the task as seen
from the agent’s perspective. By learning the task, the effective intricacy is progressively
decreased as the controller becomes more familiar with it and obtains knowledge (under-
standing) of how its sub-tasks can be executed. When a sub-task is successfully learned by a
controller, from the point of view of the agent it stops being part of the task and its intricacy
needs not be considered anymore:> what a controller knows how to do is not part of the task for
that specific controller. As understanding of the task is accumulated, the task becomes easier:
the difficulty decreases and when it reaches zero the controller is able to perform the task
repeatedly without error.

3.4.1 Task execution phases: Learning & doing

The execution of a task can be thought of in the terms of two, possibly overlapping,® phases:
a learning phase and a performing phase. The difficulty of a task execution can then be un-
derstood as affecting both of these phases in different ways, as shown in Section 3.4.2 and
3.4.3.

The learning phase is characterized by the search for models that can provide a satisficing
solution to the problem posed by the task, where by satisficing is meant that the solution
need not be optimal, but should still suffice to achieve the goals set by the task. The set of
models to be learned would be a superset of the minimal set of models which identify the
task’s intricacy, because this set might possibly include other, superfluous and/or incorrect,
models that came about from the learning process which are not necessarily useful. From
the point of view of our task theory, the search for these models involves looking for the
relevant observable variables that have some causal relationship with the goal variables and
growing the understanding of how these variables map onto the goal variables. In other
words, learning can be thought of as the process of finding the appropriate mapping from
manipulatables, the atomic actions, to the observable goals and the other observables that are
found to be associated with the goals. The search for this mapping is most likely happening
by looking at associations in the perceived data, and it leads to the production of (possibly
useful) models. More generally, the production of useful models is guided by hints found in
observations, of which associations and correlations are a particular case.

The performing phase is the actual execution of any solution found in the learning phase,
and therefore it is all about reaching proficiency in performing at least one such solution. This
proficiency is progressively improved by increasing the reliability of execution of the various
steps of the solution, for example by reducing the rate of error.

°From the designer’s point of view, the intricacy of the task is unaffected.
SFor an AGl-aspiring system or a reinforcement learner these would be overlapping to various degrees, while
in the case of other machine-learning approaches these may be distinct, sequential phases.

48

Chapter 3. Task theory Difficulty

A controller’s performance on a task can be evaluated as a function of its reliability, the
capacity of the controller to keep performing the task over and over again, and its robustness
to the initial conditions of the task, the capacity of the controller to perform the task in its
average case scenario.

There are a number of factors that affect the difficulty of learning and performing a task
that are unrelated to the task’s intricacy. Some of these factors that have been identified are
discussed in the following two sections.

3.4.2 Difficulty factors in the learning phase

In this section are described the various factors that affect the difficulty of some specific con-
troller in learning a task. In the context of learning, the difficulty can be easily understood
as the time required to learn the task: a task is said to be more difficult to learn than another
task if it takes a longer time to learn it.

Constraints on solution quality — A task might have multiple solutions, some better than
the others along some metric (for example, number of steps, time or energy require-
ments, and so on). Specifying some restrictive constraints on the quality of a task’s
solution can indeed affect the difficulty of learning the task (e.g. requiring optimal en-
ergy or time costs for the solution might very well make the task close to impossible to
solve by a controller).

Spurious associations — Spurious associations, where variables appear associated due to a
common cause affect the difficulty of the learning phase. The presence of these associa-
tions do not affect intricacy though, because as an objective measure based on physical
mechanisms, it doesn’t really matter if two variables appear associated or not. In fact,
such associations might be observed by some learners while others might not, therefore
the identification and the influence on the learning process of associations is dependent
on the cumulative understanding of the performing controller.

Anticausal associations — For every causal relationship, there are observable anti-causal
associations between the effects and their causes. By “anti-causal association” is meant
a causal association where the causal variables and the effect variables are reversed,
i.e. a relationship that supposes that the effects caused their causes. A controller that
is able to detect and understand the direction of causation is able to learn the correct
model of reality more quickly. In particular, controllers which understand the notion
of time are greatly facilitated, as the causes always precede their effects.

Delays of observations — By delay in observations is meant the phenomenon where the
observed value of a variable is experienced with a certain time lag ¢ after its occur-
rence. While such phenomenon is an inevitable occurrence in the physical world, due
to the fact that transmission of information can never be instantaneous in principle, it
becomes particularly relevant if such delay is much larger than the controller’s minimal
amount of time needed to experience a sensory stimulus. Longer delays can impact the
learning of cause-and-effect relationships, because it becomes harder for the controller
to ascertain which action led to which effect (it is in effect an instance of the temporal
credit assignment problem). Nevertheless, delays do not affect intricacy because it do
not affect the number of causal mechanisms in place.

Distinguishability of signals — The state of an observable variable might not be distin-
guishable from other states. The distinguishability of signals depends intrinsically on

49

Chapter 3. Task theory Difficulty

the sensors performing the measurements, and if picking out (distinguishing) the sig-
nals of some variable is difficult, the creation of accurate models (i.e. learning the task)
becomes more difficult as well. There might be other variables, more easily measured,
that can act as predictors of the variable whose states are difficult to pick out.

Superfluous variables — The presence of superfluous variables in the task, or rather, the
inability of a controller to employ an attention mechanism to restrict its own reasoning
only on the salient elements and relations of the task, can greatly affect the speed of
learning of the task.

Controllability — The degree of controllability of a task can directly affect the learning
process. Some variables might not be controllable in a finite time. In other words, the
state of some variables the agent is interested in might not behave in a way it desires
by a particular deadline, which leads to failure in performing the task. Uncontrolla-
bility is influenced by such factors as constrained action (input) ranges, constrained
value ranges of variables, the absence of causal chains from control inputs to particular
variables in the state space, delay effects, the existence of confounding variables that
influence the causal process in an unknown manner. Besides, while some variables are
directly controllable and can be set to any value at any time, some are controllable only
after spending sufficient energy (control effort) and time.

3.4.3 Difficulty factors in the performing phase

Various characteristics of a task’s solution influence the difficulty of performing it. The length
in number of steps and how heterogeneous are the steps can all influence the difficulty of
actually carrying out the task, because they have the possibility of increasing the rate of errors
of the performer. Another series of factors are concerned entirely with errors in execution,
for example, whether a misstep in the solution invalidates the task completely, and if not,
how many such missteps can occur until the task is considered to be failed. Time is also an
important factor: solutions that take more time to execute are harder to perform, all other
things being equal, because they would at least be more prone to unexpected occurrences
hampering the controller’s performance. A sequence of steps to be executed to conclude a
task might be executed synchronously or asynchronously: in the former case the various
steps are executed one after another following a fixed time frame, with the task figuratively
waiting for the controller to do something (e.g. like a game of chess, where each player
patiently waits for their opponent’s move), while in the latter case there is not any such
constraint; the difficulty of executing a solution can indeed be affected accordingly if in some
parts must be executed either synchronously or asynchronously. A solution might require a
certain precision of execution of the various actions, and it can be expected that the greater
the required precision, the harder is the solution to perform. Lastly, time, energy and other
resource constraints can greatly affect the difficulty of performing a solution: when such
resources are scarce, i.e. close to the physical minimum required to perform the task, it was
generally found that controller incur in many more difficulties compared to situations where
there is a lot of leeway in terms of available resources.

In summary, the factors that affect the performing phase that we have identified are the
following:

 Length of the solution (in # of steps)

« Length of the solution (time required to execute the steps)

50

Chapter 3. Task theory Decomposition of tasks

« Gravity of mistakes (if there are certain actions that invalidate the rest of the solution,
or if it is always possible to correct mistakes)

« Number of allowed mistakes before the task is considered to be failed
« Variety of actions in the solution

« Synchronicity or asynchronicity of execution

« Precision of actions in the solution

+ Available time to execute the solution (compared against the shortest possible time
required)

« Available energy to execute the solution (compared against the lowest possible amount
of energy required)

3.5 Decomposition of tasks

From our causal diagram representation of tasks it is possible to derive a procedure for the
decomposition of tasks into its component subgoals in an objective way. The causal diagram
representation of a task allows a straightforward approach for such decomposition.

Let’s take for example the task of unlocking a three digit bike lock, with the assumption
that the code is known beforehand. This task requires the setting of three independent digits
of the code, in any order. It appears therefore intuitive that for the final goal of opening the
lock, the subgoals would be exactly three, each essentially specifying to set the appropriate
digit of the code. But is such decomposition objective? Why not decompose the task into
setting the first two digits at once and then the last digit?

The manipulative approach to causation upon which we based our task theory provides a
simple answer to these questions. Each digit of the code is set by an independent mechanism,
which for example in the case of locks is a rotating gear responsible for only a single digit.
This independent mechanism, which would be represented by a single node of the diagram at
this level of detail, can be affected by a localized action of rotating its wheel. This action does
not affect any other mechanism in the system, therefore it is local in the space of mechanisms.
Compare this lock to another lock, where there are again three digits but the two left-most
digits are set by a single rotating wheel which shows all possible combinations of 2-digit
values (00,01, 02, ...,98,99). In this case, two digits are set by a single mechanism and a
proper subgoal for this task would be: "Set the two left-most digits”, instead of "Set the left-
most digit” and ”Set the middle digit”.

Therefore the decomposition of tasks can follow the decomposition of causal diagrams
into the individual nodes on the causal path to the goal variables. The order to follow when
fulfilling the obtained subgoals is left to be decided by the controller.

3.6 Composition and sequencing of tasks

Likewise for decomposition, tasks can be composed by merging the corresponding causal dia-
grams. Endogenous variables shared by both diagrams can be merged into the same variable.
Then, all is left to do is to check if any background variable u; of any one diagram corresponds
to an endogenous variable v; in the other diagram. In such case an arrow can be drawn from

51

Chapter 3. Task theory Learning as a task

v; to U, where vy is the variable affected by u;. After this process has been repeated for all
the variables in the task, the merge is complete.

A particular type of composition is the sequential composition of tasks; many tasks are
naturally thought of as a sequence of steps “Walk to the door, then open the door, then close
the door”. The sequential composition of tasks is a composition in which the sub-tasks being
merged require a particular order for their execution, i.e. each task has some required pre-
conditions that have to be met for the task to be attempted (One cannot open the door if they
aren’t in range for reaching the handle, so one first needs to complete the sub-task of getting
there). The sequential composition of tasks can be implemented using the same rules as the
classical composition, with the difference being only that some of the mechanisms in these
tasks will depend on the values of some variables (representing the pre-conditional state).

3.7 Learning as a task

The body of the controller, in particular its sensors and actuators, belongs to the boundary
between a task theory and a yet-to-be defined theory of controllers, a proper theory of learn-
ing. Having progressed thus far with a task theory, we are now in position to provide some
insights about learning theory.

Learning itself can be considered as a task, as one of the goals in AGI research is to de-
sign reflective systems that are capable of recursive self-improvement of their learning and
knowledge acquisition processes. Therefore, in the task of learning, we can consider the goal
to be the production of a program with tolerance ranges across all key dimensions of the task
being learned. Ideally, this program would use the minimum amount of time and energy, but
rarely for real world tasks such aim is achievable. Instead, learners should aim for a reasonable
cost in terms of time and energy. To define reasonability of the use of resources, we can first
consider that for any task there must be a minimal number of causal relations that have to be
modelled correctly by the controller. Then, a reasonable amount of time and energy would
be whatever expenditure of these resources was incurred to act on this set of models.

If the task is being provided from another agent with a specification of all variables part of
the task, learning then consists in finding which of these variables are relevant for achieving
the goal. On the other hand, there is an additional degree of complexity if the task does
not include such list, for example if this task only specifies the goal or has to be determined
autonomously by the controller. In such cases, the controller also has to find which variables
should it consider as part of the task in the first place, in other words, to employ an attention
mechanism to home in on the set of possibly relevant variables.

52

CHAPTER 4

Conclusion

In this chapter we conclude this thesis by outlining some ideas for future work and answering
to some criticisms that our ideas received. In Section 4.1 we describe possible approaches for
testing our theory on AGI-aspiring systems and narrow-Al systems. In Section 4.2 Construc-
tor Theory, developed by physicists David Deutsch and Chiara Marletto, is briefly introduced
with the aim of drawing some connection to our work. In Section 4.3 we respond to some of
our critics objections about our work and in Section 4.4 we describe some avenues for further
research on this task theory.

4.1 Testing

The approach to task theory described in this work could be put to test in a number of in-
teresting ways, each providing a variety of insights into the tasks and especially the learners
assigned to them. The learners that could be used in this testing phase would include the
Non-Axiomatic Reasoning System (NARS) and Autocatalytic Endogenous Reflective Archi-
tecture (AERA), which are among the foremost AGI-aspiring systems that exist today. For
comparison, then, it would be interesting to compare their results with those of a reinforce-
ment learner, e.g. an Actor-Critic Reinforcement Learner.

One way to go about testing would be to construct a number of well understood tasks,
analyzed using the proposed task theory, and submit them to a number of different learners to
verify whether there’s any difference in the learner’s capabilities and, most importantly, if the
results match the expectations produced by their analysis according to the theory. Another
way to go would be to construct a task such that its intricacy can be easily and intuitively
increased, and see up until which point the various learners are able to cope with the increased
complexity of the task.

Most interestingly, another way of testing the theory would be to construct two tasks that
are overlapping in some of the variables and causal relationships between these variables.
Then, by having the learners execute the first task and then the second, it would be possible
to evaluate the degree of transfer learning that has occurred and the different degree of causal
understanding achieved by the different learners.

53

Chapter 4. Conclusion Connections with Constructor Theory

4.2 Connections with Constructor Theory

Constructor Theory is a candidate “theory of everything” developed by physicists David
Deutsch and Chiara Marletto. This theory aims to express all current scientific theories by
defining which physical transformations, hereby called ‘tasks’, are possible and which are
impossible (Deutsch, 2013). This stands in contrast with the usual interpretation of physics
which aims to predict what will happen given some initial conditions and the laws of nature
(Deutsch, 2013). A task is defined on some physical substrate as having a set of legitimate
inputs for each of whom there exist one or more legitimate outputs (Deutsch, 2013), and con-
sists in the transformation of the former into the latter. These tasks are carried out, or better
yet these physical transformations are caused, by a constructor, which is defined as anything
that can cause such transformation in the physical reality while retaining its ability to do so
again (Deutsch, 2013). Therefore a constructor is capable of performing some task if when-
ever presented with the appropriate inputs of the task it will produce the appropriate output,
all over again and a particular task is possible if it can be caused by any such constructor.
(Deutsch, 2013). The notion of causation has been prominent in this short introduction to the
theory, so it is interesting to note its definition:

Since a catalyst changes only the rate of a reaction, not the position of equilib-
rium, it is sometimes deemed a mistake to regard catalysts as causing reactions.
However, that argument would deny that anything causes anything. Even with-
out a factory, the components of a car do spontaneously assemble themselves
at a very low rate, due to Brownian motion, but this happens along with count-
less other competing processes, some of them (such as rusting away) much faster
than that self-assembly, and all of them much slower than the assembly effected
by the factory. Hence a car is overwhelmingly unlikely to appear unless a suit-
able constructor is present. So if causation is meaningful at all, catalysts and other
constructors do indeed cause their characteristic constructions. (Deutsch, 2013,

pp- 7-8)

From this point of view, we can consider something as causing something else if its action
is instrumental in bringing about the result in a timely manner, a result which otherwise
would not materialize because of other competing processes hampering the random and slow
process of spontaneous motion of particles.

It easily follows from the definition of constructor that no such thing can exist in nature,
both because of possible mistakes when performing a task and because everything in the
physical reality is subject to decay and deterioration (Deutsch, 2013). The solution is to define
some bounds on the energy used for the task and the error in input and output states, then
defining tasks of the form “cause C to perform A, and to remain capable of doing so again”,
where the constructor C is considered a substrate itself and A, is some task with energy and
error bounds defined (Deutsch, 2013). On the other hand, abstract constructors can be more
familiar to us, and one such constructor is knowledge. Deutsch defines knowledge as:

Knowledge is information which, once it is physically instantiated in a suitable
environment, tends to cause itself to remain so: it survives criticism, testing, ran-
dom noise, and error correction. (Here I am adopting Popper’s (Popper, 1968)
conception of knowledge, in which there need be no knowing subject.) For ex-
ample, the knowledge encoded in an organism’s DNA consists of abstract genes
that cause the environment to transform raw materials into another instance of
the organism, and thereby to keep those abstract genes, and not mutations or

54

Chapter 4. Conclusion Connections with Constructor Theory

other variants of them, physically instantiated, despite the mutation and natural
selection that keep happening. (Deutsch, 2013, p. 24)

Knowledge is thus created and maintained by “intelligent beings” and the transformations
described by physics are the result of the application of knowledge by some type of agent,
humans for example (Deutsch, 2013).

It is interesting to note that in Constructor Theory tasks are considered with keen consid-
eration about the available resources and their use, just like in AGI research. In (Deutsch,
2013, p. 26) a task of transmuting a mass m of hydrogen into at least a mass M gold using at
most E energy is described. Using the physical law that relates mass to energy and having
fixed a value for M it is possible to partition the space induced by & and m into the subspaces
of possible and impossible tasks; the impossible subspace encompasses all combinations of E
and m that in the physical world cannot be used to cause the transmutation of a mass M of
gold, either because the limits imposed by relativity are violated or because of current limits
in transmutation technology. The boundary between the possible and impossible subspaces
represents the values for which the use of resources is optimal, i.e. for every value of hydrogen
mass m the boundary is the minimal value of energy E to transmute it to the specified mass
M of gold. The graph showing these spaces resembles very closely the graphs describing
optimal time and energy usages for the tasks described in (Thorarensen et al., 2016, pp. 6-7).

It is evident that, in Constructor Theory, tasks are very similar to the concept of function,
or rather, of physical mechanism, and the constructor is just the entity actually executing the
function. Therefore a stark difference with our work is that in Al, tasks are a transformation
from an initial state to a solution state, while in Constructor Theory they are about the con-
version of input values to output values. In the above example is totally missing any mention
of time, which makes sense for a function (since functions are usually considered to be time-
less) but unacceptable for tasks in the physical world, which are subjected to the passage of
time.

Linking with Computability Theory, programmable constructors are constructors that can
load a program, i.e. knowledge, and execute the task that is encoded. It follows then that
a universal constructor can exist, a programmable constructor whose repertoire, the set of
tasks it can be programmed to perform, is that of all possible programmable constructors (cf.
Universal Turing Machine). It seems spontaneous to ask whether people are such universal
constructors. Deutsch argues in (Deutsch, 2013, pp. 38) that it is not the case, not because we
might not be able to apply given knowledge (the program) to perform some task, but because
as humans we might not be so inclined to carry it out again and again. Deutsch continues
arguing that possibly we could be by being fooled into being destroyed after building another
universal constructor, but he doesn’t think that such thing can be done with high reliability.
Therefore humans can at most be a rough approximation of a universal constructor.

The question that now arises is: would a truly AGI system be a universal constructor?
Would we want it to be so, or would we rather want it to be more like us? Pearl argues (Pearl
and Mackenzie, 2018, pp. 328-329) that robots would greatly benefit by having, just like us,
the illusion of free will, as it might enhance communication among themselves and especially
with humans. For the former, the argument goes that by thinking in terms of intents and
willed choices it would be much easier for them to relay complex causal instructions while
for the latter case the advantage is that it would make communication with us more natural,
by virtue of sharing the same assumptions about the free will. Pearl relates that believing in
their own free will would also help with the robot’s reflective capabilities, by making it able to
reason about its intents and possibly act differently.! If an AGI system is built to work under

'Therefore it would help for conterfactual reasoning, of which, as already argued, only modern humans are

55

Chapter 4. Conclusion Criticisms

the illusion of free will just like we are, it is not hard to see that it would too be only a rough
approximation of a universal constructor, albeit better than any single human or humanity
as a whole, provided that it is not programmed to have mechanisms such as boredom or
rebelliousness.? Yet, all the aforementioned objections about humanity not being a universal
constructor would apply to it as well.

4.3 Criticisms

In this section are presented some of the criticisms that were raised by other researchers that
were introduced to this work while it was still in progress.

Subjectivity of causation Another objection sometimes raised is about the existence of
causal relationships and causality, in the description of tasks. It is argued that for an intelligent
system there is no use for the belief of objective causation, since an agent will never have the
full knowledge of the environment or itself to derive any “true causal relationships” at all
(Wang and Hammer, 2015). It is therefore much more useful for an agent to use a mechanism
of temporal inference instead of causal inference, which would nonetheless result quite close
to the typical notion of “causation” in everyday life (Wang and Hammer, 2015).

A: In our work, the usage of “objective causal relationships” is practically motivated and
limited to the description of the tasks from the designer’s perspective, which assumes that
everything is known a-priori (p. 34). From the perspective of a learner, who does not have
access to the designer’s perspective, the concept of “objective causal relationships” is replaced
by “useful causal model” (p. 48), and thus this criticism does not apply. When it comes to the
learning and performing of tasks by some controller, no assumption of objectivity is made
about the models or any other information structure used by the learner to describe hypoth-
esized “actual, objective causal relationships” that lay at the heart of the task’s physics.

Variables versus events An objection that was raised to our work is that we do not make
clear the difference between a variable and an event. Variables are passive entities which hold
values, while events, which include actions that are executed by the performing controller, are
the actual bearers of change inside the task-environment. So how can variables, specifically
the manipulatable variables, act in the same way as events?

A: The manipulatable variables are just variables indeed, but the controller can affect them
directly by setting their value to something, in the same way that Pearl’s do-operator inter-
venes on the variables of a causal model (p. 36). So, in this sense, there are still events, in
the form of actions carried out by a controller, which by affecting the manipulatable variables
bring about changes into the task-environment. Of course, any action in the physical world
takes time and requires energy; a mountain climber may “set her energy” on the mountain
top, but that doesn’t bring her there instantaneously. In this way, targeting a particular value
for the tension on a muscle may take a very short time, but making the muscle move the arm
or leg to a target position takes longer. In both cases, however, the occurrences are events,
one taking longer than the other. The purpose of task theory is to allow convenient analysis
and dissection of complex tasks; how variables and events relate to each other remains to be
further worked out.

capable of and would be immensely useful to have for AGI systems.
®Even if such things could be programmed, there is no good reason to endow a system with them.

56

Chapter 4. Conclusion Future work and open issues

Task versus problem One objection that was raised is that the distinction between ‘task’
as used here and the classical computer science notion of ‘problem’, which is typically defined
as “a problem that can be solved by a computer,” is not clarified.

A: Since in our work ‘task’ is defined as a problem assigned to an agent with variable
bindings (including when it may start, how much time it may take, etc.) (see Glossary), this
objection is resolved once this fact is taken into consideration.

4.4 Future work and open issues

In this section we outline some pointers for future work on task theory and some open issues
that still need to be addressed.

Similarity An objective similarity measure between observable variables, in particular be-
tween the observable goal variables and the other observables, could be developed. This mea-
sure should be able to quantify how direct is the mapping between any two observables, i.e. it
should quantify with a number the degree of association between variables. In the case of lin-
ear associations, this measure might correspond to the classic notion of correlation. As there
exist spurious and non-spurious associations, we might talk of a relevant similarity which
aids the controller in learning the task, and irrelevant similarity which doesn’t. Sheikhlar,
Thorisson, and Eberding (2020) define a number of similarity measures for variables, states,
relations and transition functions, but for the similarity of variables their work is limited on
considering the temporal and value similarity of the same variable.

Precision Another interesting measure that could be defined is precision, the measure of
measurability and controllability of variables related to a (sub-)goal. It would be affected by
the quality and resolution of observation provided by the sensors and quality and resolution
of control provided by actuators.

Unlearnable tasks Some tasks can be defined in such a way that their successful execu-
tion depends on other variables that are unobservable, i.e. non-measurable knowledge. For
example, the task of opening a lock without knowing the combination and with a limited
number of tries can only be attempted by random guessing in absence of other hints in the
task (e.g. is the combination written somewhere that can be observed?). If such is not the
case, the successful execution of the task depends solely on the knowledge of the performing
controller, which could know the code from other experience outside of the task. It should
always be ascertained that if a task depends on such outside knowledge, unlearnable from the
task itself, the learner possesses such knowledge.

4.5 Final remarks

A whole field of research could spring forth from this initial work on task theory. Even though
not all of the requirements for a task theory (Section 1.2) might have been achieved, this work
on a theory of tasks can still provide a starting point for future efforts by other researchers.
In this sense, any type of advancement, or any subset of the aforementioned objectives being
achieved in the future, is still a worthwhile endeavor that would bring us closer to a com-
plete task theory, for which little to no work has been performed otherwise, which, once
successfully specified, would be an immense boon for the field of AL

57

Bibliography

Barto, Andrew G., Richard S. Sutton, and Charles W. Anderson (1983). “Neuronlike adaptive
elements that can solve difficult learning control problems”. In: IEEE Transactions on Sys-
tems, Man, and Cybernetics SMC-13.5, pp. 834-846. por: 10 . 1109 /TSMC . 1983 .
6313077.

Beishon, R. J. (1967). “Problems of Task Description in Process Control”. In: Ergonomics 10.2,
pp. 177-186. por: 10 . 1080 /00140136708930857. eprint: https : / /doi .
org/10.1080/00140136708930857. urL: https : //doi.org/10.
1080/00140136708930857.

Berkson, Joseph (1946). “Limitations of the Application of Fourfold Table Analysis to Hos-
pital Data”. In: Biometrics Bulletin 2.3, pp. 47-53. 1ssSN: 00994987. UrL: http: //www.
jstor.org/stable/3002000.

Bieger, Jordi and Kristinn R. Thérisson (2017). “Evaluating Understanding”. In:

— (Aug. 2018). “Task Analysis for Teaching Cumulative Learners”. In:

Card, Stuart K., Allen Newell, and Thomas P. Moran (1983). The Psychology of Human-Computer
Interaction. USA: L. Erlbaum Associates Inc. 1sBN: 0898592437.

Clark, Richard et al. (Jan. 2008). “Cognitive task analysis”. In: Handbook of Research on Educa-
tional Communications and Technology, pp. 577-593.

Conant, Roger C. and W. Ross Ashby (1970). “Every good regulator of a system must be a
model of that system”. In: Intl. J. Systems Science, pp. 89-97.

Crandall, Beth, Gary Klein, and Robert Hoffman (Jan. 2006). Working Minds: A Practitioner’s
Guide to Cognitive Task Analysis. 1SBN: 9780262270922. por: 10 . 7551 /mitpress/
7304.001.0001.

Deutsch, David (2013). Constructor Theory. arXiv: 1210.7439 [physics.hist-ph].

Drury, C.G. (1983). “Task analysis methods in industry”. In: Applied Ergonomics 14.1, pp. 19-28.
1SSN: 0003-6870. por: https://doi.org/10.1016/0003-6870(83)90215-
6. UrL: https://www.sciencedirect.com/science/article/pii/
0003687083902156.

Eberding, Leonard, Arash Sheikhlar, and Kristinn R. Thoérisson (June 2020). “SAGE: Task-
Environment Platform for Autonomy and Generality Evaluation”. In:

Galton, Francis (Jan. 1888). “Co-Relations and Their Measurement, Chiefly from Anthropo-
metric Data”. In: Proceedings of the Royal Society of London Series I 45, pp. 135-145.

Garrett, Deon, Jordi Bieger, and Kristinn R. Thorisson (Dec. 2014). “Tunable and generic prob-
lem instance generation for multi-objective reinforcement learning”. In: pp. 1-8. por: 10 .
1109/ADPRL.2014.7010646.

58

https://doi.org/10.1109/TSMC.1983.6313077
https://doi.org/10.1109/TSMC.1983.6313077
https://doi.org/10.1080/00140136708930857
https://doi.org/10.1080/00140136708930857
https://doi.org/10.1080/00140136708930857
https://doi.org/10.1080/00140136708930857
https://doi.org/10.1080/00140136708930857
http://www.jstor.org/stable/3002000
http://www.jstor.org/stable/3002000
https://doi.org/10.7551/mitpress/7304.001.0001
https://doi.org/10.7551/mitpress/7304.001.0001
https://arxiv.org/abs/1210.7439
https://doi.org/https://doi.org/10.1016/0003-6870(83)90215-6
https://doi.org/https://doi.org/10.1016/0003-6870(83)90215-6
https://www.sciencedirect.com/science/article/pii/0003687083902156
https://www.sciencedirect.com/science/article/pii/0003687083902156
https://doi.org/10.1109/ADPRL.2014.7010646
https://doi.org/10.1109/ADPRL.2014.7010646

Bibliography Bibliography

Kim, Jin and Judea Pearl (1983). “A Computational Model for Causal and Diagnostic Reasoning
in Inference Systems”. In: IJCAL

Krishnavedala (2012). Schematic drawing of an inverted pendulum on a cart.File: Cart -pendulum. svg.
vrL:https://commons.wikimedia.org/wiki/File:Cart-pendulum.
svg.

Kurke, Martin L. (1961). “Operational Sequence Diagrams in System Design”. In: Human Fac-
tors 3.1, pp. 66-73. por: 10 . 1177 /001872086100300107. eprint: https: //
doi.org/10.1177/001872086100300107. urL: https://doi.org/
10.1177/001872086100300107.

Legg, Shane and Marcus Hutter (2007). A Collection of Definitions of Intelligence. arXiv: 0706 .
3639 [cs.ATI].

Militello, Laura and Robert Hutton (Dec. 1998). “Applied Cognitive Task Analysis (ACTA):
A Practitioner’s Toolkit for Understanding Cognitive Task Demands”. In: Ergonomics 41,
pp. 1618-41.po1: 10.1080/001401398186108.

Miller, Robert (1953). “A METHOD FOR MAN-MACHINE TASK ANALYSIS”. In:

Nivel, Eric, Kristinn R. Thérisson, Bas Steunebrink, Haris Dindo, et al. (2014). “Bounded Seed-
AGI”. In: Artificial General Intelligence. Ed. by Ben Goertzel, Laurent Orseau, and Javier
Snaider. Cham: Springer International Publishing, pp. 85-96. 1sBN: 978-3-319-09274-4.

Nivel, Eric, Kristinn R. Thoérisson, Bas Steunebrink, and Jurgen Schmidhuber (2015). “Anytime
Bounded Rationality”. In: Artificial General Intelligence. Ed. by Jordi Bieger, Ben Goertzel,
and Alexey Potapov. Cham: Springer International Publishing, pp. 121-130. 1sBN: 978-3-
319-21365-1.

Nivel, Eric, Kristinn R. Thorisson, et al. (2013). Bounded Recursive Self-Improvement. arXiv:
1312.6764 [cs.AI].

Pearl, Judea (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-
ence. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. 1sBN: 1558604790.

— (2009). Causality. Models, Reasoning, and Inference. 2nd ed. Cambridge, UK: Cambridge
University Press. 1SBN: 978-0-521-89560-6. por: 10.1017/CB09780511803161.
Pearl, Judea and Elias Bareinboim (Nov. 2014). “External Validity: From Do-Calculus to Trans-
portability Across Populations”. In: Statistical Science 29.4. 1ssN: 0883-4237. por: 10 .

1214/14-sts486.urL: http://dx.doi.org/10.1214/14-STS486.

Pearl, Judea and Dana Mackenzie (2018). The Book of Why: The New Science of Cause and Effect.
1st. USA: Basic Books, Inc. 1sBN: 046509760X.

Peters, Jonas, Dominik Janzing, and Bernhard Schélkopf (2017). Elements of Causal Inference:
Foundations and Learning Algorithms. The MIT Press. 1SBN: 0262037319.

Popper, Karl (1968). “Epistemology Without a Knowing Subject”. In: Logic, Methodology and
Philosophy of Science III. Ed. by Bob Van Rootselaar and Johan Frederik Staal. Vol. 52.
Studies in Logic and the Foundations of Mathematics. Elsevier. Chap. 3, pp. 333-373. por:
https://doi.org/10.1016/S0049-237X(08)71204-7.urL: https:
//www.sciencedirect.com/science/article/pii/S0049237X08712047.

Reichenbach, Hans (1956). The Direction of Time. Dover Publications.

Riedl, Mark O. (2014). “The Lovelace 2.0 Test of Artificial Creativity and Intelligence”. In:
CoRR abs/1410.6142. arXiv: 1410.6142. urL: http://arxiv.org/abs/1410.
6142.

Sackett, David L. (1979). “Bias in analytic research”. In: Journal of Chronic Diseases 32.1, pp. 51—
63. 1sSN: 0021-9681. por: https://doi.org/10.1016/0021-9681(79)
90012-2.urL:https://www.sciencedirect.com/science/article/
pii/0021968179900122.

59

https://commons.wikimedia.org/wiki/File:Cart-pendulum.svg
https://commons.wikimedia.org/wiki/File:Cart-pendulum.svg
https://doi.org/10.1177/001872086100300107
https://doi.org/10.1177/001872086100300107
https://doi.org/10.1177/001872086100300107
https://doi.org/10.1177/001872086100300107
https://doi.org/10.1177/001872086100300107
https://arxiv.org/abs/0706.3639
https://arxiv.org/abs/0706.3639
https://doi.org/10.1080/001401398186108
https://arxiv.org/abs/1312.6764
https://doi.org/10.1017/CBO9780511803161
https://doi.org/10.1214/14-sts486
https://doi.org/10.1214/14-sts486
http://dx.doi.org/10.1214/14-STS486
https://doi.org/https://doi.org/10.1016/S0049-237X(08)71204-7
https://www.sciencedirect.com/science/article/pii/S0049237X08712047
https://www.sciencedirect.com/science/article/pii/S0049237X08712047
https://arxiv.org/abs/1410.6142
http://arxiv.org/abs/1410.6142
http://arxiv.org/abs/1410.6142
https://doi.org/https://doi.org/10.1016/0021-9681(79)90012-2
https://doi.org/https://doi.org/10.1016/0021-9681(79)90012-2
https://www.sciencedirect.com/science/article/pii/0021968179900122
https://www.sciencedirect.com/science/article/pii/0021968179900122

Bibliography Bibliography

Sheikhlar, Arash, Kristinn R. Thorisson, and Leonard Eberding (July 2020). “Autonomous Cu-
mulative Transfer Learning”. In: pp. 306-316. 1sBN: 978-3-030-52151-6. por: 10.1007 /
978-3-030-52152-3_32.

Thorarensen, Throstur et al. (Aug. 2016). “FraMoTEC: Modular Task-Environment Construc-
tion Framework for Evaluating Adaptive Control Systems”. In:

Thorisson, Kristinn R. (2020a). “Discretionarily constrained adaptation under insufficient knowl-
edge & resources”. In: Journal of Artificial General Intelligence 11.2, pp. 7-12.

— (2020b). Lecture notes in Advanced Topics in Artificial Intelligence. http : / / cadia.
ru.is/wiki/public:t720-atai-2012:what_is_agi. [Online; accessed
7-July-2021].

— (2020c). Lecture notes in Advanced Topics in Artificial Intelligence. http : //cadia.
ru.is/wiki/public:t-720-atai:atai-20:agents_and_control.
[Online; accessed 7-July-2021].

— (2020d). Lecture notes in Advanced Topics in Artificial Intelligence. http://cadia. ru.
is/wiki/public:t_720_atai:atai-20:knowledge_representation.
[Online; accessed 29-June-2021].

Thorisson, Kristinn R., Jordi Bieger, et al. (July 2016). “Why Artificial Intelligence Needs a
Task Theory — And What It Might Look Like”. In: vol. 9782, pp. 118-128. 1sBN: 978-3-319-
41648-9.po1: 10.1007/978-3-319-41649-6_12.

Thorisson, Kristinn R., David Kremelberg, et al. (July 2016). “About Understanding”. In: 1SBN:
978-3-319-41648-9. po1: 10.1007/978-3-319-41649-6_11.

Thorisson, Kristinn R. and Arthur Talbot (July 2018a). “Abduction, Deduction & Causal-Relational
Models”. In:

— (2018b). “Cumulative Learning with Causal-Relational Models”. In: Artificial General Intel-
ligence. Ed. by Matthew Iklé et al. Cham: Springer International Publishing, pp. 227-237.
ISBN: 978-3-319-97676-1.

Turing, Alan M. (Oct. 1950). “Il. —Computing machinery and intelligence”. In: Mind LIX.236,
pp- 433-460. 15sN: 0026-4423.po1: 10. 1093 /mind/LIX. 236.433.eprint: https:
//academic.oup.com/mind/article-pdf/LIX/236/433/30123314/
1ix-236-433.pdf. urL: https://doi.org/10.1093/mind/LIX. 236.
433.

Wang, Pei (2004). “Toward a Unified Artificial Intelligence”. In: AAAI Technical Report.

— (Apr. 2012). “The assumptions on knowledge and resources in models of rationality”. In:
International Journal of Machine Consciousness 03.po1: 10.1142/S1793843011000686.

— (2019). “On Defining Artificial Intelligence”. In: Journal of Artificial General Intelligence
10.2, pp. 1-37. por: doi:10.2478/jagi-2019-0002. urL: https://doi.
org/10.2478/jagi-2019-0002.

Wang, Pei and Patrick Hammer (July 2015). “Issues in Temporal and Causal Inference”. In:
pp- 208—217. 1sBN: 978-3-319-21364-4. por: 10.1007/978-3-319-21365-1_22.

60

https://doi.org/10.1007/978-3-030-52152-3_32
https://doi.org/10.1007/978-3-030-52152-3_32
http://cadia.ru.is/wiki/public:t720-atai-2012:what_is_agi
http://cadia.ru.is/wiki/public:t720-atai-2012:what_is_agi
http://cadia.ru.is/wiki/public:t-720-atai:atai-20:agents_and_control
http://cadia.ru.is/wiki/public:t-720-atai:atai-20:agents_and_control
http://cadia.ru.is/wiki/public:t_720_atai:atai-20:knowledge_representation
http://cadia.ru.is/wiki/public:t_720_atai:atai-20:knowledge_representation
https://doi.org/10.1007/978-3-319-41649-6_12
https://doi.org/10.1007/978-3-319-41649-6_11
https://doi.org/10.1093/mind/LIX.236.433
https://academic.oup.com/mind/article-pdf/LIX/236/433/30123314/lix-236-433.pdf
https://academic.oup.com/mind/article-pdf/LIX/236/433/30123314/lix-236-433.pdf
https://academic.oup.com/mind/article-pdf/LIX/236/433/30123314/lix-236-433.pdf
https://doi.org/10.1093/mind/LIX.236.433
https://doi.org/10.1093/mind/LIX.236.433
https://doi.org/10.1142/S1793843011000686
https://doi.org/doi:10.2478/jagi-2019-0002
https://doi.org/10.2478/jagi-2019-0002
https://doi.org/10.2478/jagi-2019-0002
https://doi.org/10.1007/978-3-319-21365-1_22

	Introduction
	Artificial Intelligence and the quest for Generality
	What is a Task Theory?
	Historical notes

	Background
	Bi-directional models
	A Theory of Understanding
	Causality
	Causal diagrams
	Representing time in causal diagrams
	Association and correlation
	Linking association with causation: the Common Cause Principle
	The manipulative approach to causation
	The mini-Turing test

	Task theory
	An extension of structural causal diagrams
	Variable attributes
	Time, energy and other resources
	Example
	The cart-pole task

	Principles for a task theory
	Intricacy
	Some properties of intricacy

	Difficulty
	Task execution phases: Learning & doing
	Difficulty factors in the learning phase
	Difficulty factors in the performing phase

	Decomposition of tasks
	Composition and sequencing of tasks
	Learning as a task

	Conclusion
	Testing
	Connections with Constructor Theory
	Criticisms
	Future work and open issues
	Final remarks

