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Abstract
Artificial intelligence systems capable of operating highly autonomously in physical envi-

ronments must be able to deal effectively with new situations in a variety of domains. Among
other things, such systems must be able to relate new information to their existing knowledge
to achieve their goals, while managing the necessarily limited resources available, including
energy, and especially time and memory. In this context, “meaning” is a practical tool for
exploring the relationships between a situated controller and its environment, and which, by
highlighting the most relevant pieces of knowledge, supports efficient resource management
and goal achievement.
Current research on meaning in artificial intelligence is mainly active in the subfield of

Natural Language Processing (NLP). The recent advent of Large Language Models (LLMs)
has drawn interest to this area, focusing on patterns and relationships in written texts. While
LLMs achieve new state of the art performance in many standardized language-related tasks,
they still leave unaddressed fundamental issues like (hallucination) out-of-the-lab autonomous
and self-supervised learning, robust revisable knowledge, and especially neglect the funda-
mental aspects of dynamism and subjectivity characterizing meaning generation.
No theory exists to date providing a complete and practical overview of all the above issues,

linking empirical learning paradigms, models of revisable knowledge andmeaning generation
in autonomous goal-directed systems. This is a nontrivial task, as each topic is very broad,
and connecting them all also requires a higher-level view of the phenomenon of intelligence.
The theory outlined in this thesis builds on some results of past research in general ma-

chine intelligence, in particular cumulative learning, Task Theory, and the Constructivist AI
Methodology, formalizing and contextualizing the phenomenon of meaning and several re-
lated concepts in the context of infinite worlds. The hope is that this work will catalyze and
propel future research in empirical AI.
Should this theory prove correct, we can expect it to inspire further research on the topic

of meaning in AI as a pragmatic tool for achieving goals and tasks, thus contributing to the
quest for artificial general intelligence.

Keywords: Meaning, Information, Knowledge, Task theory, Artificial Intelligence, General Ma-
chine Intelligence, Empirical Artificial Intelligence
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Glossary

Agent An agent is an embodied system consisting of a controller (the mind) and a body. The
body is the agent’s interface to the world which allows the perception of the external
environment, through the flow of data from the body’s sensors to the controller, and
the execution of atomic actions, by means of the commands sent from the controller to
the body’s actuators. The body contains two lists of variables that the controller can
read and write to: B = hVS ; VAi. Since the body is a physical entity, its sensors and
actuators are physical objects in the world as well and are treated as such (Thórisson,
Bieger, Thorarensen, et al., 2016).

Environment An environment is a view of a world. The body of an agent is considered
to be part of it. (Thórisson, Bieger, Thorarensen, et al., 2016).

Failure A failure state (negative goal) is an undesirable, possibly partial, state that the agent
should avoid (Thórisson, Bieger, Thorarensen, et al., 2016).

Goal A goal state (positive goal) is a desirable, possibly partial, state that the agent should
reach (Thórisson, Bieger, Thorarensen, et al., 2016).

Phenomenon A phenomenon (process, state of affairs, occurrence) �, where W is the
world and � � W , is composed of a set of elements f�1; �2; :::; �n 2 �g of various
kinds including relationsR� that couple elements of �with each other and with those
of other phenomena. The elements that a phenomenon is made up of can be any sub-
division of �, including sub-structures, causal relations, whole-part relations and so
on. The relations R� � 2W � 2W that extend to other phenomena identify the phe-
nomenon’s context. The set of relations can be partitioned in inward facing relations
Rin
� = R� \ (2� � 2�) and outward facing relations Rout

� = R� n R
in
� (Thórisson,

Kremelberg, et al., 2016).

Problem A problem can be atomic or compound. An atomic problem is specified by an
initial state, goal states and failure states. A compound problem can be created by
composition of atomic problems using operators such as conjunction, disjunction and
negation. A problem for which a solution is known to exist is called a closed problem
(Thórisson, Bieger, Thorarensen, et al., 2016).

Problem space The problem space is the set of all valid states of the task (Belenchia, 2021).
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Glossary Glossary

Solution A solution is a sequence of atomic actions that results in a path through the state
space that reaches all of the goal states and none of the failure states (Thórisson,
Bieger, Thorarensen, et al., 2016).

Solution space The solution space is the subset of the problem space defined by the task’s
goals and constraints, made up of all the solution states reachable from any initial state
of the task (Belenchia, 2021).

State A concrete state S is a value assignment to all of the variables in a task-environment:
S =

S
v2V fhv; xv j xv 2 dvig. A state can be either concrete or partial: a partial state

S� only assigns values to a subset of the variables. When considering real variables,
partial states can be represented using error bounds: S� =

S
v2V �fhv; xl; xu j xl <

xu ^ (xl; xu) � dvig; this way a partial state covers a set of concrete states. A state is
valid if and only if all invariant relations hold: valid(S) () 8r2Rr(S). In practice
the presence of noise and the partial observability of variables makes the use of partial
states more practical than concrete states, therefore by state is always meant a partial
state unless otherwise noted. (Thórisson, Bieger, Thorarensen, et al., 2016).

Task A task is a problem assigned to an agent, T = hS0;Gtop;Gsub; G
�; B; tgo; tstop; Ii,

where S0 is the set of permissible initial states, Gtop is the task’s set of top-level goals,
Gsub is the set of given sub-goals, G� is its set of constraints, B is a controller’s body,
and t refers to the permissible start and stop times of the task. An assigned task will
have all its variables bound and reference an agency that is to perform it (accepted
assignments having their own timestamp tassign). This assignment includes themanner
in which the task is communicated to the agent, for example if the agent is given a
description of the task a-priori, receives additional hints or if it only gets incremental
reinforcement signals as certain states are reached. A task is performed successfully
when theworld’s history contains a path of states that solved the problem (Thórisson,
Bieger, Thorarensen, et al., 2016).

Task-Environment By task-environment is meant the tuple of a task and the environ-
ment in which it is to be performed. The separation of a task from its environment is
not always clear and somewhat arbitrary, therefore the term task-environment is used
to encompass all the relevant aspects of both (Thórisson, Bieger, Thorarensen, et al.,
2016; Bieger and Thórisson, 2017).

World AworldW is an interactive system consisting of a set of variables V , dynamics func-
tions F , an initial state S0, domains D of possible clusters of particular constraints on
their values, and a set of relations between the variables R: W = hV; F; S0; D;Ri. The
variables V = fv1; v2; :::; vkV kg represent anything that may change or hold a partic-
ular value in the world. The dynamics functions act as the laws of nature in the world
and as a whole can be seen as an automatically executed function that periodically or
continually evolves the world’s current state into the next: St+� = F (St). It is useful
to the decompose the dynamics into a set of transition functions: F = ff1; f2; :::; fng
where fi : S� ! S� and S� is a partial state. The domains dv 2 D specify which
values each variable v can take, and for physical domains these are usually subsets of
real numbers. The relations are Boolean functions over variables that hold true in any
state the world will ever find itself in. If the world is a closed system with no outside
interference, the domains and relations are implicitly fully determined by the dynamics
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Glossary Glossary

functions and the initial state. In an open system where changes can be caused exter-
nally, instead, the explicit definition of domains and invariant relations can restrict the
range of possible interactions (Thórisson, Bieger, Thorarensen, et al., 2016).
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CHAPTER 1

Introduction

Artificially intelligent (AI) systems are designed to carry out tasks on behalf of humans. Such
tasks, which ultimately take place in the physical world, require an intelligent system to un-
derstand the context in which it finds itself at any point in time and relate that context to its
own (and its master’s) goals, gathering and organizing information, learning and adapting,
all while operating with a high degree of autonomy. Indeed, the requirement for autonomy
is of primary importance here, in that the more autonomous a system is, the less help and
programming is required for it to accomplish tasks, yet autonomy is but one of many re-
quirements that such a system is expected to meet. As outlined by Thórisson (2020e) and
Nivel and Thórisson (2013), autonomy must be associated with qualities such as predictable
robustness in novel circumstances and graceful degradation in case of failure to prevent unde-
sirable effects from happening. If the system fails unpredictably, the designer’s intervention
will be needed to figure out what went wrong and how to fix the problem, undercutting its
level of autonomy. Regardless of the application domain in which they are used, AI sys-
tems must be reliable. This, in turn, necessitates the use of methodologies for building AI
systems that follow explainable principles of operation. Let us take as a reference the only
example of intelligence unanimously recognized: humans. The human brain naturally man-
ages patterns, connections, and narratives to make sense of the world. Meaning provides a
framework for organizing and processing information, helping individuals relating complex
concepts and situations to their goals (e.g., I am hungry, I see an apple this means that

����������! if I
eat the apple I will satisfy my hunger). Humans are also capable of introspection, of asking
questions about the context and about the achievement of their objectives. These abilities
underlie phenomena such as communication and collaboration, which are fundamental el-
ements of problem-solving. An AI system that does not work by explainable principles of
operation cannot, consequently, introspect and explain itself – or, at least, not on its own –
and, if it cannot explain the meaning of its own actions, even less can we assume that it can
grasp the meaning of any other phenomenon at all.The state-of-the-art AI technologies that
to date are most being researched and interested in by both the scientific community and in-
dustry are almost entirely based on mechanisms that, by design, do not lend themselves well
to interpretation (see neural networks). We cannot evaluate at any given moment what these
systems are learning or why they are learning certain things except by defining ad-hoc tests,
which, however, cannot possibly cover all possible cases and are therefore to be considered
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Chapter 1. Introduction

not exhaustive. The lack of a certain degree of meaning management in these AI systems
makes them fundamentally unstable and unreliable and, therefore, unsuitable for adoption
in complex and dynamic environments where a high degree of autonomy is required. The
purpose of this thesis is to resume and neatly organize the foundational concepts as well as
requirements necessary for the most comprehensive definition of the phenomenon known
as “meaning” and the process behind its generation. This definition will be contextualized
within the research framework of Constructivist AI, with reference to the Constructivist def-
initions of knowledge, information, task, and, in particular, previous work on Constructivist
Task Theory.
The manuscript is structured in 5 chapters:

1. In Chapter 1, we introduce the topic of meaning in AI, and the need for a framework
addressing meaning in the field of artificial intelligence from a more general perspec-
tive. We will introduce the subfield of Artificial General Intelligence and the related
Constructivist AI methodology;

2. In Chapter 2, we go through the some related concepts required for the following chap-
ters, including: learning, agents, control, causality, fundamentals of a task theory, ex-
tended causal diagrams and a theory of understanding;

3. In Chapter 3, we analyze the concept of meaning starting from the analysis of its com-
mon usage, arguing in favour of its pragmatic nature, and introduce core meaning-
related concepts, like models suitable for knowledge representation, causal chains, rea-
soning and the concept of relevance;

4. In Chapter 4, we provide our definition of meaning and meaning generation, compli-
mented with a characterization of goals, and formalization of the concepts of implica-
tion and relevant implications; considerations on the limitedness of energy and time
influence all of the definitions given;

5. Finally, in Chapter 5 we briefly summarize what has been presented in this thesis and
raise some thoughts on connections with other work and future developments.

Our contribution to achieving the set objective includes:

• Research, consultation and organization of corpus of sources and related work;

• Introducing the intuition of the concept of meaning, identifying the aspects necessary
for its formalization;

• Definition of requirements necessary for meaning generation and features affecting the
way it is handled;

• Review, reformulate, and combine the fundamental aspects of implication and relevance
characterizing the generation of meaning, already described in previous work on Any-
time Bounded Rationality (Nivel, Thórisson, B. Steunebrink, and Schmidhuber, 2015)
and Understanding (Thórisson, Kremelberg, et al., 2016);

• Formalization of the meaning generation process;

• Reformulation of all formulas produced in light of the principle of limited time and
resources;

10



Chapter 1. Introduction Artificial General Intelligence

• Considerations and comparisons between meaning and other fundamental concepts in
order to contribute to a more complete narrative of the phenomenon of intelligence
through meaning, understanding, task theory, and possible influences of meaning on
issues of teaching, symbols, and resource management.

1.1 Artificial General Intelligence

Artificial Intelligence (AI) is the field dedicated to the design and development of systems that
show behaviours or possess qualities typically associated to what we call ‘intelligence’. Intel-
ligence is a natural phenomenon most commonly associated with human minds, but is also
a characteristic of many animals (Thórisson, 2020b). Philosophers, psychologists, biologists,
artificial intelligence researchers, all have attempted over the years to give a definition of in-
telligence. Despite numerous efforts following the growing interest in defining intelligence
in the last century (White and Hall, 1980; Buxton, 1985), a well-defined and widely accepted
definition of intelligence still eludes us to this day. Noteworthy is the collection of 70-odd
definitions of intelligence made by Legg and Hutter (2007).
Although it might seem minor, the problem of having a well-established definition of intel-

ligence is actually of primary importance for any scientific field, like AI, that puts intelligence
as its central subject of study. The risk is, otherwise, to unknowingly misdirect research ef-
forts to the point of leaving the field’s area of interest altogether. Instead, we can resort to a
working definition, possibly incomplete and subject to future revision, of the phenomenon of
interest so as to guide research.
Of the many definitions of intelligence that have been given, we intend, in this work, to

refer to two in particular. The first one is the one given by Wang (1995) and Wang (2019):

“Intelligence is the capacity of an information-processing system to adapt to its
environment while operating with insufficient knowledge and resources.” (Wang,
1995)

In its works, Wang introduces the “Assumption of Insufficient Knowledge and Resources”
(AIKR), which identifies the normal working environment of an intelligent system and states
that there is not (and cannot be) an infinite amount of time, knowledge, or other resources
to carry out any task, so an agent must do its best with what it has. The second definition
we will refer to in this work is the reformulation of Wang’s definition proposed by Thórisson
(2020a):

“Intelligence is discretionarily constrained adaptation under insufficient knowl-
edge and resources.” (Thórisson, 2020a)

Thórisson further summarizes this definition by simply stating it as “figuring out how to
get new stuff done”. Thórisson’s definition is more specific, clearly separating this use of
‘adaptation’ from its sense in the context of natural evolution, whose course is determined
by physical laws. Thórisson claims that, to be called intelligent, in contrast to evolution, the
adaptation in question needs to have a capacity to handle arbitrary constrains of many forms,
as well as the capacity of inventing such constraints in light of multiple and often conflicting
goals (Thórisson, 2020a). Both of these definitions are considered working definitions, that is,
they have the sole purpose of guiding research in the right direction, while remaining open
to revisions and improvements in the immediate future.
What emerges from both of these definitions is that there is some association between

the intelligence of a system and its generality: an agent that can adapt to more, novel, en-
vironments and can achieve more goals with limited time and resources is intuitively more
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Chapter 1. Introduction AI methodologies

intelligent than an agent with a more limited spectrum of use. The goal of Artificial Gen-
eral Intelligence (AGI), also called “Strong AI” or “General Machine Intelligence” (GMI), is
therefore to develop systems that can “learn to perform multiple a-priory unknown tasks in
multiple unknown environment” (Bounded Recursive Self-Improvement 2013, p. 3), similarly
to what humans do. In contrast, the most researched “intelligent” systems today (i.e. ma-
chine learning and deep learning systems) are mostly limited to a single, pre-defined task in
an unchanging, pre-defined fixed environment (Bounded Recursive Self-Improvement 2013).
Therefore, given that even room temperature controllers “achieve goals in a wide range of
situations”, Wang and Thórisson’s definitions more robustly differentiate general intelligence
– the kind we normally associate with the concept – from other controllers and processes that
might also qualify (Belenchia, 2021).

1.2 AI methodologies

Amethodology is a systematic and structured approach or set of principles and practices used
to conduct research, solve problems, or achieve specific goals in various fields, such as science,
engineering, business, social sciences, and more. Methodologies provide a framework for or-
ganizing and executing tasks or processes in a consistent and efficient manner. While there
are several methodologies inherited from the field of computer science that are used to design,
develop and deploy specific AI applications – such as Agile methods and MLOps – there are a
few approaches to AI that can be properly called methodologies (Thórisson, 2022a). Some of
the most influential AI methodologies include the Belief-desire-intention software model, the
subsumption control architecture and decision theory. More recently, and more influential
for this work, two other AI methodologies have emerged: Constructionist and Constructivist.
Constructionist AI (Thórisson, Benko, et al., 2004) is an approach in the field of artificial
intelligence that focuses on creating intelligent systems by simulating or emulating aspects
of human cognition and learning. This approach employs the divide-and-conquer method
inherited from computer science as the main way towards the complete understanding of a
phenomenon: the problem is recursively fragmented into subproblems, each small enough to
be solved by a team of researchers within a few years (Thórisson, 2009). The fundamental
assumption underlying both the Constructivist approach and the bulk of today’s research in
AI is that intelligence can also be described and recreated using a series of modules, each of
which performs a different function. Therefore, we could consider current major research
efforts on artificial intelligence “constructionist” to an extent. However, the manual work of
breaking down problems requires constant effort by teams of researchers and, as Thórisson
(2009) points out, for any subject of study there is no guarantee that theories developed to
effectively address individual subproblems can be later combined in a straightforward man-
ner to form a complete theory. Moreover, when dealing with complex dynamic systems, any
subdivision will necessarily ignore important interconnections between the various parts,
compromising the possibility to understand how the whole system works (Thórisson, 2009).
The human mind is known to be one such complex and dynamic system, exhibiting, as ar-
gued by Thórisson (2008), the properties of a heterogeneous, large, densely-coupled system
(HeLD). The number of modules required to recreate the more complex functions of intelli-
gence would be very large and would require a highly efficient mechanism for orchestrating
the interactions among the various components. The “cognitive” development would be due
not only to the dynamic modules, but also to the ability to reorganize and evolve an ever-
growing architecture (Thórisson, 2009). For all these reasons, the Constructionist approach
is fundamentally unsuitable for the study of the broad, complex and dynamic phenomenon
that is intelligence, showing, on the other hand, to be very effective in the development of
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Chapter 1. Introduction Meaning in AI

targeted AI systems for well-defined industrial applications.
Constructivist AI is the name of an innovative and relatively recent approach to AI de-

signing and building that calls for a fundamental shift, from Constructionism’s hand-crafting
to self-organizing architectures and self-generated code (Thórisson, 2012). This new artificial
intelligence methodology, partially inspired by Piaget’s theories on cognitive development,
was proposed by Thórisson, 2012 to address the numerous significant challenges involved
in building artificial general intelligence AGI systems, by replacing the top-down architec-
tural design approaches that are ubiquitous today with methods that allow a system to au-
tonomously manage its own cognitive growth. The topics originally listed as major play-
ers in the transition from Constructivist AI (Thórisson, 2009) are: temporal grounding, feed-
back loops, pan-architectural pattern matching, small white-box components and architecture
meta-programming and integration. The Constructivist AI approach has been successfully
demonstrated in the HUMANOBS project (Bounded Recursive Self-Improvement 2013), where
a domain-independent AI system autonomously learned real-time socio-communicative be-
havior through observation (Thórisson, Nivel, et al., 2014).

1.3 Meaning in AI

The study of “meaning” has long been primarily the interest of philosophers, linguists and
psychologists, who have studied it within their respective fields of study (Robert A. Wilson,
1999; Ignelzi, 2000) . In 1956, a conference was held at Dartmouth College in the United States,
attended by many prominent figures in computational intelligence (John McCarthy, Marvin
Minsky, Claude Shannon to name a few). During that conference the term “artificial intelli-
gence” was coined and many research topics within the field were decided. Since then, many
research topics related to intelligence have been further developed in artificial intelligence,
including the concept of “meaning”.
The period of the first 20-30 years of research in the field of AI is today known as “Good

Old-Fashioned AI” (GOFAI) (Haugeland, 1985) and was characterized by the prevalent study
of what is called Symbolic AI. During the period between the 50s and the 60s, the notion that
if a machine can manipulate numbers, then it can also manipulate symbols was gradually
established, and it was theorized that symbol manipulation might be the essence of human
thought. The hypothesis, called the “Physical Symbol System Hypothesis" was formulated by
scientists Allen Newell and Herbert A. Simon in the mid-1970s and reads:

“A physical symbol system [such as a digital computer, for example] has the nec-
essary and sufficient means for general intelligent action.” (Newell and Simon,
1976)

In Newell and Simon’s own definition, a physical system of symbols consists of a set of enti-
ties, called symbols, which are physical structures that can appear as components of another
type of entity called expressions (or symbolic structures). Thus a symbolic structure consists
of a number of exemplars (or tokens) of symbols that are physically related to each other in a
certain way (e.g., by the fact that one token is next to another token). At each instant the sys-
tem will contain a collection of these symbolic structures. In addition to these structures, the
systemwill also contain a collection of processes that operate on expressions to produce other
expressions. A physical system of symbols is therefore a machine that produces a changing
set of symbolic structures over time. According to this approach, meaning is associated with
symbols and represented through symbols and rules tomanipulate symbols. Symbolic AI used
tools such as logic programming, production rules, semantic nets and frames, and it developed
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applications such as knowledge-based systems, of which expert systems are the best known
example. To limit complexity and organize data into information and knowledge, ontologies
were used1. Symbolic systems were based on explicit rules and declarative knowledge, with
an emphasis on manual programming. Discourse representation theory and first-order logic
have been used to represent sentence meanings. However, this approach had obvious limits:
it was difficult to capture the complex and shady meaning of words and concepts.
Meaning appears therefore to be deeply tied to problems like knowledge representation and
reasoning. Semantic networks, conceptual graphs, frames, and logic are all approaches to
modeling knowledge such as domain knowledge, problem-solving knowledge, and the se-
mantic meaning of language.
After a period of disillusionment and subsequent disinterest in the potential offered by arti-

ficial intelligence, known as “AI winter”2, new interest has been fueled by new applications of
artificial neural networks, the origins of which can be traced back to the work of McCulloch
and Pitts (1943). By focusing on specific sub-problems, “narrow” AI systems achieved com-
mercial and academic success in the 1990s and early 21st century Russell and Norvig (2003).
These kinds of systems are now used and studied extensively.

1.3.1 Natural language

Of the areas of study in artificial intelligence, the ones that to date are most commonly as-
sociated with the search for meaning are Natural Language Processing (NLP) and Natural
Language Understanding (NLU), the latter also known as Natural Language Interpretation
(NLI)3. Natural language processing is the title used to refer to the theory that focuses on
treating language as data to perform tasks such as identifying topics without necessarily un-
derstanding the intended meaning. Natural language understanding, in contrast, constructs a
meaning representation and uses that for further processing, such as answering questions.
The “classical” process of meaning extraction starts with text transformation using tech-

niques like parsing, tokenization, lemmatization, part-of-speech tagging, stemming, stop-
words removal, all of which were already used by symbolic systems. Up to the 1980s, most
NLP systems were based on complex sets of hand-written rules. Starting in the late 1980s,
however, there was a revolution in NLP with the introduction of machine learning algorithms
for language processing. Gradually, statistical and machine learning techniques for NLP be-
came popular, as well as vectorized representations of textual data for information retrieval
(Russell and Norvig, 2003). Today’s state-of-the-art approaches are transformers, deep learn-
ing architectures that rely on attention mechanisms (Vaswani et al., 2023), machine learning
techniques trying to mimic cognitive attention. These new systems open the way to new
possibilities; however, they are opaque and do not yet produce semantic representations that
can be interpreted by humans.

1An ontology is a formal approach to representing, naming, and defining the categories, properties, and rela-
tions between concepts, data, and entities in general.

2More than one period of disinterest in AI has been recorded, interspersed with what are called AI summers
(Kautz, 2020). In addition, different sources use different dates for the AI winters. Consider having a look at Howe
(1994) and Russell and Norvig (2003).

3It is usually customary to speak simply of Natural Language Processing, bringing language comprehension
under its umbrella as a further specialization. Therefore we, too, will refer to NLP in this more general sense
throughout this work.
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1.3.2 The symbol grounding problem

The Symbol Grounding Problem represents a central and intricate challenge in the field of
artificial intelligence and cognitive science research, raising the fundamental question of the
connection between abstract symbols, sensory perception and the physical world. The Sym-
bol Grounding Problem, as postulated byHarnad (1990), refers to the problem of how a system
can assign meaning to symbols or representations that it processes, and is thus related to the
problem of what “meaning” itself really is.
In the Symbol Grounding Problem, perception serves as the gateway through which sym-

bols acquire meaning. AI systems, equipped with sensory apparatus, must interpret and map
sensory data to symbolic representations. The interaction with the physical world plays an
equally central role, establishing grounding as a dynamic process. Contextual understanding
and disambiguation are fundamental to symbol grounding, since the same symbol can have
different meanings in distinct contexts.
The Symbol Grounding Problem is cited here because it raises interesting arguments about

the causal connection between symbols and their real-word reference.

1.3.3 Peirce’s Pragmatism

Charles Sanders Peirce, a pioneering figure in American philosophy, laid the groundwork for
a school of thought that would come to be known as Pragmatism. Born in 1839, Peirce’s intel-
lectual contributions spanned a broad range of fields, from philosophy and logic to semiotics
and scientific inquiry. At the heart of Peirce’s philosophy is the pragmatic maxim (Peirce,
1878):

It appears, then, that the rule for attaining the third grade of clearness of ap-
prehension is as follows: Consider what effects, that might conceivably have
practical bearings, we conceive the object of our conception to have. Then, our
conception of these effects is the whole of our conception of the object.

The maxim asserts that the meaning of a concept resides in its conceivable practical effects or
consequences. In other words, the significance of an idea is revealed through its potential im-
pact on experience and behavior. This emphasis on practical consequences as the touchstone
of meaning distinguishes Pragmatism from more abstract and speculative philosophies.
Peirce’s intellectual legacy extends beyond Pragmatism to include relevant work in semi-

otics. He proposed 3 parts to a sign: a sign/symbol, and object and an interpretant. Peirce’s
innovation resides in the idea of detaching the symbol/sign from the object it signified, and
introducing the interpretation process as a key entity (Thórisson, 2020c). This leaves room
for a possible explanation of how symbols and meaning can change depending on culture,
and how people can misunderstand each other.
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CHAPTER 2

Related Work

The foundation of any significant research endeavor lies in a thorough exploration and un-
derstanding of the key concepts and theories that underpin the investigation. In this chapter,
we introduce and elucidate a few necessary notions upon which the research presented in this
thesis rests. By delving into the theoretical framework, foundational principles, and seminal
works in the field, we aim to provide the reader with a comprehensive understanding of the
intellectual works that form the basis of our work. Each concept introduced is a building block
that sets the stage for the novel contributions and insights that will unfold in the chapters to
come.
We begin by discussing the concepts of agents and control as necessary elements for the

development of a theory of intelligence aimed at the execution of practical tasks in a variety
of worlds. We then introduce the need to make use of models for effective control of com-
plex systems and the role of cognitive architectures. Next, we discuss the need for learning
as a method for handling the high complexity of the worlds in which agents must operate,
foremost among them the physical world. Particularly relevant is the learning of causal rela-
tionships, to which an in-depth section will be devoted. It will then be shown how to apply
the notion of causality to the creation of structural models, usable as a basis for the devel-
opment of intelligent agents. Finally, we summarize the most recent results on Task Theory
and Pragmatic Understanding Theory, which are foundational for discussing our theory of
meaning.
The concepts introduced in this chapter cover the contextual aspects of our work, namely

the autonomous, situated, and experience-based agents capable of cumulative learning, the
qualities this type of agents possess and related frameworks for task achievement and under-
standing in task execution. These notions further support our view of meaning as a pragmatic
phenomenon, in a coherent narrative that finds meaning as its central pivot.

2.1 Autonomous grounded systems

In the field of artificial intelligence, the pursuit of computational agents with the ability to
generate meaning has become a paramount challenge. As we delve into the dynamics of
meaning and meaning generation, a critical consideration emerges – the role of autonomous
agents and the nuanced mechanisms of control that govern their interactions with the envi-
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ronment. At the core of our theory lies the concept of control, a fundamental engineering
principle that enables the manipulation of system dynamics to achieve desired outcomes.
Along with the need to deal with control and interaction, the importance of learning for

intelligent agents becomes evident. Learning is not merely a feature but a necessity for these
agents, as they operate within constraints of limited time and resources. Unlike static systems,
intelligent agents encounter dynamic and ever-changing environments, requiring the ability
to adapt and optimize their behaviors over time. Learning enables agents to gather insights
from experience, allowing them to make informed decisions and improve their performance
in novel and uncertain situations.

2.1.1 Control

Control mechanisms define the rules and strategies that govern how agents perceive data,
make decisions, and adapt their behavior over time. At its most basic level, control can be
achieved through the simple, yet powerful, concept of “feedback loop”. In the simplest form
of control, feedback is employed to continuously monitor the system’s output and adjust the
input based on the disparity between the desired and actual states. This mechanism forms
the basis of a control loop. A controller can be abstracted as a set of processes P in a state S
that can receive an input i, produced by and selected from an environment, having at least
one goal G and returning an output o that pushes it toward its goals (Thórisson, 2020d).
These components enable a cyclical process where the system iteratively approaches the de-
sired state, minimizing the difference between the (perceived) actual state and desired goal
states. Over time, different forms of control have been developed to manage the dynamics of
systems in specific ways. We will begin by exploring classical control and then advance to
more ‘intelligent’ approaches.

PID Control The Proportional-Integral-Derivative (PID) controller is a cornerstone in
control theory, offering a versatile framework for regulating systems by considering the pro-
portional, integral, and derivative components of the error signal. The controller receives an
input value from a process and compares it with the desired setpoint (SP), calculating their
difference – the error value e(t). The error value is used to calculate a correction by adjusting
the output of the PID based on the value of the error signal (proportional action), the past val-
ues of the error signal (integral action) and how fast the error signal varies (derivative action),
hence the name. Mathematically, the PID control law is expressed as:

u(t) = KP e(t) +KI

Z t

0
e(t)dt+KD

de(t)

dt

where:

• u(t) is the control variable (e.g., the opening of a control valve),

• e(t) is the error signal,

• KP ,KI , andKD are the proportional, integral, and derivative gains, respectively.

While PID controllers are versatile and often perform satisfactorily with only roughly tun-
ing, they can perform poorly in some applications and do not, in general, provide optimal
control (they do not optimize the objective function). The fundamental difficulty with PID
control is that it is a control system based on feedback, with constant parameters, and no
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explicit knowledge of the process. The PID controllers’ reactive nature makes them sensitive
to changes in the system dynamics. Finally, the tuning process of a PID controller is a mostly
manual and possibly time-consuming process (Ogata, 2010).

Model Predictive Control Model Predictive Control (MPC) embraces a predictive ap-
proach, optimizing control actions by considering a dynamic model of the system and pre-
dicting its future behavior. The main advantage of MPC lies in its approach to optimization
of the current timeslot, while keeping future timeslots in account. At each time t the con-
troller solves an optimal control problem over a finite future horizon of N time steps, but
applies only the first optimal move and, at time t + 1, gets new measurements and repeats
the optimization again. Differently from PID control, MPC has the ability to anticipate future
events and can take control actions accordingly. Model predictive control is a multivariable
control algorithm that uses an internal dynamic model of the process, a cost function J over
the receding horizon, and an optimization algorithm minimizing the cost function J using
the control input u. An example of a quadratic cost function for optimization is given by:

J =
NX
i=1

wxi(ri � xi)
2 +

MX
i=1

wui�u
2
i

without violating constraints (low/high limits) with:

xi: ith controlled variable (e.g. measured temperature)
ri: ith reference variable (e.g. measured temperature)
ui: ith manipulated variable (e.g. measured temperature)
wxi : weighting coefficient reflecting the relative importance of xi
wui : weighting coefficient penalizing relative big changes in ui

etc.

The MPC is easier to tune (compared to PID) and can handle structural changes, but it often
requires a large number of model coefficients to describe a response and, if the prediction
horizon is not formulated correctly, control performance will be poor even if the model is
correct (Woolf et al., 2023).

Reinforcement Learning In the realm of AI and optimal control, reinforcement learn-
ing (RL) is a machine learning technique that aims to realize autonomous agents capable of
achieving tasks. Reinforcement learning provides a paradigm where agents learn optimal (or
nearly-optimal) control policies through interaction with their environments. Agents learn
to take the actions that will maximise a cumulative reward, the reward function. Basic rein-
forcement learning is modeled as a Markov decision process, where:

S is a set of environment and agent states
A is a set of actions of the agent)
Pa(s; s

0) = Pr(st+1 = s0 j st = s; at = a) is the probability of transition at
time t from state s to state s0 under action a

Ra(s; s
0) is the immediate reward after transition from s to s0 with action a
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Reinforcement Q-learning, a fundamental algorithm in RL, updates a Q-value table iteratively
based on the observed rewards. The Q-value update is expressed as:

NewQ(s; a) = Q(s; a) + �
�
R(s; a) + 
maxQ0(s0; a0)�Q(s; a)

�
where:

• NewQ(s; a) is the new Q-value for state s and action a,

• Q(s; a) is the current Q-value,

• � is the learning rate,

• R(s; a) is the reward for taking that action at that state,

• 
 is the discount rate, and

• maxQ(s; a) is the maximum expected future reward given the new s0 and all possible
actions at that state.

Reinforcement learning is overtly devoted to the execution of tasks, which makes it dif-
ferent from other machine learning models. The cons of reinforcement learning include the
need for a large amount of data for learning, the intensive use of computational resources and
high maintenance cost.

2.1.2 Agents

An agent is an embodied controller, a specific type of controller consisting of at least one
sensor (a transducer that changes one type of energy to another type), at least one effector (a
transduction mechanism that implements an action that a controller has committed to), and
a controller (Thórisson, 2020d).

Definition 2.1.1 (Agent (Woolridge, 1997)). An agent is a computer system situated in some
environment and capable of autonomous, flexible action in that environment in order to meet
its design objectives.

Agents employ control techniques to act on the environment in which they are situated in
order to pursue their goals. When operating in highly-complex, physical worlds, agents are
dealing with open, unpredictable and often multi-agent environments: the inherent unpre-
dictability and elevated complexity of such environments pose significant challenges to con-
trol activities, making the task of designing autonomous agents that can consistently accom-
plish tasks across a diverse array of situations particularly challenging.
In their paper of 1970, Roger C. Conant andW. Ross Ashby provide insights into the require-

ments for effective regulation in complex environments, proving that “Every good regulator
of that system must be a model of a system” (Conant and Ashby, 1970). In light of the “good
regulator” theorem, we understand that there is a fundamental need for models in control,
suggesting that any theory of intelligence guiding the design of “intelligent” agents must be
based on the concepts of model and representation, ultimately addressed by cognitive archi-
tectures. By cognitive architecture, we intend the internals of a controller for the complex,
adaptive control of a situated agent. The architecture of an intelligent system dictates the
nature of information processing achievable by an agent controller and defines the overall
capabilities of the system within a specific environment (Thórisson, 2020d).

19



Chapter 2. Related Work Autonomous grounded systems

Intelligent agent architectures are typically classified according to the following scheme
(from simplest to most complex): reactive, predictive, and reflective. We present each of
these architectures below, making use of the descriptions given in Belenchia (2021).

Reactive agents Reactive agents only respond to the perceived sensory information from
the environment, obtained through their sensors. Their architecture is mostly fixed through
their lifetime, and while learning is possible the agent only ever reacts to stimuli and is inca-
pable of proactive behavior. A system of this kind would be unable to hit a fastball in baseball:
human brains typically employ a prediction mechanism to do that and excellent players still
only hit a ball about 30% of the time. Most AI architectures are reactive, and examples of this
type of systems span the very simple thermostats to the complex control systems of power
plants. These types of systems are limited in the sense that they are built with an embed-
ded model of the task they carry out which is unchangeable, bar the customization of a few
parameters during run-time (Thórisson, 2020d).

Predictive agents Predictive agents are able to anticipate environment states and act in an-
ticipation of sensory information. Their architecture is mostly fixed as in the case of reactive
agents, but by means of predictive models they are able to act in a proactive, goal-oriented
mode. Predictive agents also incorporate reactive control to achieve a more robust behavior.
In particular, predictive agents are able to perform tasks which involve phenomena happening
faster than the action-perception loop of the system. This type of agents, endowed with the
capabilities of creating, selecting and evaluating models has the potential to be a truly general
learner and also carries the potential to improve its own learning mechanism by modelling
the learning itself (Thórisson, 2020b).

Reflective agents Reflective agents go a step beyond predictive architectures by enabling
the agent tomodify its own architecture (thus exhibiting cognitive growth) through introspec-
tion and meta-reasoning (Thórisson, 2020b). Two prominent examples of reflective agents are
the Non-Axiomatic Reasoning System (Wang, 2004) and the Auto-catalytic Endogenous Re-
flective Architecture (Bounded Recursive Self-Improvement 2013), both of which aspire to be
generally intelligent systems.

By autonomous and grounded systems, the kind mentioned in the title of this thesis, we
mean precisely the intelligent agents described in this section, situated in some environment
to fulfill some purpose. The autonomy requirements that such systems must possess are
typically variable depending on their purpose, but, in general, greater degrees of autonomy
correspond to a lower need for human intervention, so designing systems capable of operating
highly autonomously is typically desirable. Autonomy is a key aspect of intelligent agents;
we will cover it in Section 2.1.4.

2.1.3 Learning

As expressed in the introduction to this section, learning is a key feature of intelligence and
an important tool for intelligent agents operating in dynamic and complex environments, so
when we refer to the concept of agent we really mean learning agents. Learning is the process
that leads to the acquisition of knowledge, or actionable information (Thórisson, 2022b). The
fundamental need for learning stems from two main assumptions:
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• Any complex and dynamic environment is challenging tomodel andwill always present
performers with novel situations;

• Learners are expected to work under the assumption of insufficient knowledge and
resources (AIKR) (Wang, 2012).

The second assumption is particularly interesting, as it argues the substantial impossibility
for an agent performing a task to take advantage of an infinite amount of resources or time.
Agents must face the limits of our physical world: given that there is no such thing as an infi-
nite amount of time, energy or resources, agents cannot record and store all their experiences
in an immense lookup table to be queried on demand, but must implement increasingly effi-
cient compressionmethods for information storage and retrieval (Thórisson, 2020c). Learning
is thus a way of synthesizing a large amount of information while retaining aspects of it that
are necessary for carrying out tasks.
But AIKR tells us even more: most of the time, for an agent in a complex world, information

available to help the agent reach any goal or do any task is incomplete, incorrect, or absent
and the agent should make effective use of whatever is available to it (Thórisson, 2022c). This
brings out additional features of the learning process: knowledge acquisition does not happen
all-at-once, so learning is rooted in experience, and agents must be capable of updating their
knowledge with increasingly refined representations – i.e. cumulative learning (Thórisson,
2022b). The following are some of the main properties of the learning process, as identified
and reported by Thórisson (2022b):

• Purpose1: the purpose of learning is to adapt and respond in rational ways to problems,
to achieve foreseen goals;

• Speed: how quickly an agent learns;

• Data: learning should concern data in its various forms (e.g. continuous, discrete, sym-
bolic, big, small, etc.);

• Quality: quality can be assessed on multiple dimensions. Noteworthy are reliability
(consistent performance under repeated application) and applicability (correct applica-
tion in relevant circumstances);

• Retention: can be measured using a battery of test administered multiple times;

• Transfer: the learner’s ability to use something they have learned in similar or com-
pletely different situations;

• Meta-Learning: hard to measure, but might involve observing changes in knowledge
acquisition on the above dimensions (Speed, Data, Quality, Retention, and Transfer);

• Progress signals: for artificial learners these are known and thus do not have to be
measured.

The learning process involves several steps: the acquisition of models (through pattern
extraction), evaluating the performance of existing models (identifying and eliminating un-
reliable models and updating the reliability score of the models), and monitoring the learning
activity itself (learning about the learning process) (Nivel, Thórisson, B. Steunebrink, Dindo,
et al., 2014). The agents in the focus of our attention are grounded, that is, they are situated

1This factor determines how the rest of the features in this list are measured
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in an environment (physical or virtual) in which they have to perform the tasks assigned to
them. As we already argued when we introduced AIKR, two features of learning are partic-
ularly relevant for grounded agents: experience and cumulativeness. We discuss them in
more detail in the following paragraphs.

Experience-based learning Situated agents are typically put in a complex environment
(such as the physical world) that cannot be known or specified entirely a priori, thus requiring
agents to learn through experimentation and interaction with their surroundings – in other
words learning from experience (Thórisson, 2022b).

Cumulative learning Cumulative learning is a learning mechanisms introduced to unify
several separate research tracks in a coherent form that can be easily related to AGI require-
ments: multitask learning, lifelong learning, transfer learning and few-shot learning (Thóris-
son, 2022b; Thórisson, Bieger, Li, et al., 2019). Cumulative learning subsumes all of these
aspects of learning in an organized framework. In short, cumulative learning provides a way
of contextualize every tiny bit of information acquired into coherent knowledge (thus en-
ablingmultitask learning) in a continuous learning process (online lifelong learning); it makes
use of a robust knowledge acquisition mechanism (which means that the acquisition of new
knowledge does not mess up previously acquired knowledge) that is in turn used to facilitate
learning new things (transfer learning). Transfer learning capability is, finally, used to acquire
new knowledge with less data, making few-shot learning theoretically possible.

These two features combined form the idea of learning commonly associated with human
beings (the only universally recognized example of an intelligent being). We therefore say
that AGI agents of our interest must possess experience-based cumulative learning.

2.1.4 Autonomy

Autonomy is the capacity to govern one’s own actions, to “act on its own” (Thórisson, 2022d).
Autonomy has been commonly associatedwith artificial intelligence, robotics andmulti-agent
systems, and it has been analyzed both with respect to tasks (Chandrasekaran, Josephson, and
Benjamins., 1999) and cognitive capacity and architecture (Thórisson and Helgason, 2012;
Wooldridge and Jennings, 1995). Implemented systems show different autonomy capabilities:
while systems that can move autonomously in closed spaced of limited extension are already
pervasive to date (think about autonomous home vacuum cleaners), it is not yet common to
encounter unsupervised robots on the street that perform some tasks entirely on their own.
This difference is related, for example, to the difficulty of acting in spaces that cannot be
modeled entirely a priori. Since not all systems are equally autonomous, identifying different
levels of autonomy helps us understand how to make systems more autonomous. Thórisson
andHelgason (2012) proposed a framework for the comparison of autonomy of systems, based
on four dimensions: Learning, Meta-Learning, Resource Management, and Realtime.
An effective visualization of this framework is given by the diagram shown in the Figure 2.1.
We can distinguish at least three main levels of autonomy: mechanical (automation), cog-

nitive, and biological (Thórisson, 2020e). The lowest level of autonomy is where we put
systems that perform some function, defined in advance, that remains fixed once they are
deployed, such as thermostats, deep neural networks, and the like. Their architecture is fixed
and their goals are clearly defined. This is typical of mechanical systems, but it does not mean
that these systems are bound to performing simple tasks (think of neural networks for image

22



Chapter 2. Related Work Autonomous grounded systems

Figure 2.1: “Autonomy comparison framework focusing on mental capabilities.” (Thórisson
and Helgason, 2012)

recognition). Far these reasons, instead of calling these systems “autonomous”, they are often
referred to as “automatic” (Thórisson, 2020e). A small set of elements that exhibit slightly
more autonomy than mechanical systems are simple reinforcement-based learning systems.
These systems can change their function at runtime, but they cannot change their goals (let
alone create subgoals) or handle unspecified variables. We could then place this small group
at a level of autonomy somewhere between the mechanical and cognitive levels of autonomy.
Moving up a whole level, we encounter systems possessing some cognitive autonomy. This
is the ability to adapt and handle novelty (“figure things out”), as well as create new concepts.
We can put at this level humans and a strict set of animals that show higher-level cognitive
abilities, like dogs, crows, and parrots. The highest level is the biological one, where life re-
sides. We consider it the “most autonomus” level because it is a prerequisite for the others
(Thórisson, 2020e). However, it is also a distraction to those focusing on artificial intelligence
because intelligence calls for discretionarily constrained adaptation, that is, the ability of the
system to constrain its own behavior from knowledge by choice, through selecting and gen-
erating goals, sub-goals, new knowledge, and other factors, at its own discretion, through
reasoning and logic (Thórisson, 2020a).
We therefore focus on the design of systems equipped with cognitive autonomy. Cogni-

tive autonomy comes with its own requirements, in particular over the four processes of
autonomous selection, goal-generation, control of resources, and novelty handling
(Thórisson, 2022d).

Selection By ‘selection’ we mean the autonomous selection of variables and processes.
Autonomous variable selection involves figuring out, from a set of variables, (a) which ones
are relevant, (b) how much, and (c) in what way. Autonomous process selection, on the other
hand, is deciding, for example, what types of learning algorithms to use (learning to learn)
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(Thórisson, 2022d).

Goal-generation Starting with primary goals, goal generation consists in identifying as-
pects relevant to the achievement of the primary goal, defining intermediate steps – or sub-
goals – that, once achieved, lead to the achievement of the final goal (Thórisson, 2022d). For
example, in carrying out a task, this process starts with breaking down the problem into many
subproblems that can be solved individually.

Control of resources The resources available to an agent are of at least three types: com-
puting power, time, and energy. Resource control is the set of activities designed to: (a) control
the resource use, (b) plan for it, (c) assess it, and (d) explain it (Thórisson, 2022d).

Novelty handling The ability to handle novelty autonomously requires autonomous hy-
potheses creation related to variables, relation, and transfer functions (Thórisson, 2022d).

We are interested in autonomy in the execution of tasks, and, because learning is nec-
essary to perform tasks, we want agents, among other things, to be capable of learning
autonomously. Autonomous grounded systems emerge as agents that are capable of au-
tonomous application of control mechanisms and experience-based cumulative learning to
fulfill their duties.

2.2 Causality

The concept of causality refers to the relationship between two phenomena, in which the first
phenomenon is in some way the cause of the second, that is, it determines their existence.
When it comes to performing tasks, causality plays a central role. Any intelligent system
that has to perform a task has as its goal the attainment of some target state, that is, a set of
variables that take values within particular ranges. In order to reach this state, it is necessary
to understand the functions that determine the evolution of these variables and how to act to
modify them at will, that is, to cause controlled changes in the variables. Thus, any agent that
is performing a task needs to learn, among various types of relationships, the causal relation-
ships that relate its perceptions and actions to the task’s goals (Belenchia, 2021). Perhaps one
of the most influential and prolific authors on the topic of causality is Judea Pearl (Pearl, 1988;
Pearl, 2009; Pearl and Bareinboim, 2014). In this section we will introduce Pearl’s approach
to causality, causal relationships and causal diagrams. Causal diagrams will also be discussed
as a basis for the representation of tasks, topic that we will take up later when we introduce
the basics of Task Theory introduced by Thórisson and Belenchia.
Pearl and Mackenzie’s introduce causality using the metaphor of a three step ladder, where

each step corresponds to a level of causal reasoning (Belenchia, 2021): association, inter-
vention and counterfactuals (Pearl and Mackenzie, 2018, pp. 27-43). These levels describe
a progression in cognitive abilities from the lowest level of reasoning by association to the
highest level of counterfactual reasoning (Belenchia, 2021).
The first step of the ladder, association, is the lowest level of causal reasoning, and is con-

cerned with finding associations between variables. This requires making predictions based
on passive observations of the world. A possible example of reasoning at this level comes
from the observation that a rooster crows at dawn. Simply having the observation of the si-
multaneity of the two events, we cannot say that the rooster crowing causes the sunrise or,
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vice versa, that the sunrise causes the rooster crowing. We can simply note that given one
of the two events, there is a certain probability that the other will also occur (based on our
experience). Any type of association, in general, cannot discriminate causes from effect and
neither can tell if any causal relationship is present at all (Belenchia, 2021), but associations
can still serve as good predictors even without causal knowledge. Pearl and Mackenzie claim
that most learning systems are also stuck at this level of cognition, taking machine learning
and deep learning algorithms as examples. However well designed, these algorithms can only
receive data unbundled from causal relationships; therefore, theywill be limited to identifying
associations of observations (Pearl and Mackenzie, 2018; Belenchia, 2021).
Moving up a bit, on the second rung of our ladder, we find “intervention”. The focus shifts

from observing the world to actively intervening in it. This level of reasoning responds to
questions such as ‘if I do X, how will X affect the probability of Y?’. This kind of reasoning
can be used to answer more questions, specifically the ones involving causality. An agent
that can reason about interventions can predict the consequences of its and other agents’
actions, as well as generate plans to reach desired states (Belenchia, 2021). In order to do
this, data alone is not enough; a causal model of the world is also required. Causal models
allow backward chaining from the desired goal states to the agent’s range of possible actions,
which then acts in a goal-driven manner. Pearl and Mackenzie cite children as examples of
goal-driven reasoning organisms (Pearl and Mackenzie, 2018).
Climbing further up our metaphorical ladder, we reach the highest level of reasoning, the

one labeled ‘counterfactuals’, where it is possible to answer questions about past states that
never were but could have been, had circumstances been different. Practical examples made
possible by this kind of reasoning are uchronic literary products, such as the novel “The Man
in the High Castle” written by Philip K. Dick, representing an alternate universe in which
the Axis Powers won World War II. An agent implementing this type of reasoning can reflect
on its past actions and figure out how to do better in future similar situations, but also learn
from the experience of others (Belenchia, 2021). Pearl and Mackenzie argue that only modern
humans are capable of using this kind of reasoning, and that it is precisely the ability to
understand why things have unfolded one way and not another that has made possible the
technological breakthroughs that form the basis of modern civilization (Pearl and Mackenzie,
2018; Belenchia, 2021).

Cause types A cause can be necessary, sufficient, contributory, or a combination of the
three (Epp, 2004, pp. 25-26).

• x is a necessary cause of y if the presence of y must imply the prior occurrence of x,
but the presence of x does not imply that y will occur (Pearl and Mackenzie, 2018);

• x is a sufficient cause of y if the presence of x must imply the subsequent occurrence
of y. However, the presence of y does not require the prior occurrence of x, as another
cause z may independently cause y;

• x is a contributory cause of y if the presence of x must increase the likelihood of y (if
the likelihood is 100%, then x is sufficient).

2.2.1 The manipulative approach to causation

In this work, we refer to the approach to causality known as “manipulative approach” (Pearl,
2009, pp. 223-228). This approach is based on a precise view of the physical world as a set of
independent, invariant mechanisms, each described by a set of variables. Interaction among
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these mechanisms occurs through shared variables (i.e., variables that are part of multiple
mechanisms), so in order to predict the (causal) consequences of an action (the effect of which
is understood as a change in the values of certain variables) it is necessary to reconstruct the
interactions that occur between the various mechanisms until a new steady state is reached
(Belenchia, 2021). The manipulative approach assumes that each action performed has a lim-
ited and local effect, altering only a subset of mechanisms while other remain untouched
(Belenchia, 2021). In contrast, using Pearl’s own example, tipping a single tile of a domino
array is not a limited and local action at all, as it will knock down all the other tiles that have
been aligned to that domino piece. But this action is local in the sense that it only affects the
physical mechanism keeping that single tile erect and still. Because of this locality, which
does not influence other factors in the system, it is possible for any other agent capable of
reconstructing the causal model of the example to understand the consequences of the action
(Belenchia, 2021). In this way, causal diagrams prove optimal in the analysis of the effects of
actions, as they can provide answers to this kind of questions without the need to compute
all possible outcomes of the action (Pearl, 2009).

2.2.2 Causal models

Causal models aremodels describing the causal mechanisms of a system. They can allow some
questions to be answered from existing observational data without the need for an interven-
tional study. Causal models have found applications in signal processing, epidemiology and
machine learning (Pearl, 2009). We are primarily interested in the implications that causal
models have relative to the last of the points mentioned, namely, the application of causal
models to learning processes and, more generally, as tools for knowledge representation in
intelligent systems. A causal model is formally defined as:

Definition 2.2.1 (Causal Model, Structural Causal Model (Pearl, 2009, p. 203)). A causal
model is a triple:

M = hU; V;Ei

where:

i) U is a set of background variables that are determined by factors outside the model,
also called exogenous variables;

ii) V is a set fv1; v2; :::; vng of variables, called endogenous, that are determined by vari-
ables in the model, i.e. U [ V ;

iii) E is a set of structural equations fe1; e2; :::; eng such that each ei is a mapping from
(the respective domains of) Ui [ PAi to Vi, where Ui � U and PAi � V n Vi and the
entire set E forms a mapping from U to V . Or equivalently, each ei in:

vi = ei(PAi; Ui); i = 1; :::; n (2.1)

assigns a value to vi that depends on the values of a select set of variables in U [ V ,
and the entire set E has a unique solution V (u).

It is important to note that these structural equations are not necessarily reversible and each
of them represents an autonomous mechanism (Pearl, 2009, p. 27). By autonomous mechanism
is meant that each equation is not affected by changes in other equations, and therefore an
intervention that targets one variable vi leaves all other equations in place for any vj with
j 6= i. Instead, we say that these equations are irreversible because, when dealing with
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interventions they cannot be reversed to determine any other variable than vi. Using the
example of Belenchia (2021), if the structural causal model includes the equation vi = 5 �
vj + u, then the equation vj = vi�u

5 does not necessarily hold. Intuitively, if the value
of vj is on the right hand side of the structural equation of vi, it means vi is determined
by vj , that is, a change in vj influences the value of vi. The opposite does not necessarily
hold unless, of course, vi is also present on the right hand side of the structural equation of
vj too. Therefore the equality sign in structural equations behaves as in standard algebra
only when dealing with observations, that is, when the equations represent only the observed
relationships between variables in the model. This different interpretation of equalities is
further clarified by the operational definition of structural equations given by (Pearl, 2009,
p. 160) (Belenchia, 2021).

Definition 2.2.2 (Structural Equations (Pearl, 2009, p. 160)). An equation y = f(x) + �
is said to be structural if it is to be interpreted as follows: in an ideal experiment where the
value ofX is set to x and any other set Z of variables (not containing eitherX or Y ) is set to
some value z, the value y of Y is given by f(x) + �, where � is not influenced by either x or
z.

The consequence of this definition is that it is only concerned with the value of y: nowhere
it states anything about what values x or � can take when controlling for Y .

2.2.3 Causal diagrams

From the definition of causal patterns given above, it is possible to define an additional con-
cept, that of causal diagrams. A causal diagram is a representation of the relationships be-
tween the variables of a causal model. More precisely, any structural causal model has an
associated graph where each vertex corresponds to a variable vi and a directed edge is drawn
from each pa 2 PAi to vi (Peters, Janzing, and Schölkopf, 2017). In other words, a directed
edge is drawn from any variables occurring on the right hand side of each equation (2.1) to the
vertex occurring on the left hand side (Belenchia, 2021). The resulting graph, which we call
“causal diagram”, is finally assumed to be a directed acyclic graph. The concept of causal dia-
grams is especially useful in the context of intelligent agents performing tasks. Such agents,
once they have generated or otherwise obtained a causal model of the system in which they
are situated, can understand how to reach a target state from the causal diagrams identifiable
in the model they possess2. Let us break down and analyze the above definition of causal
diagrams by drawing on some concepts from graph theory, resuming the descriptions given
by Belenchia (2021).

A graph is a pair G = (V;E) that consists in a set of vertices, also called nodes, V and
a set of unordered pairs of vertices, called edges, E � V � V . A graph is directed if the
set of edges E consists in ordered pairs of vertices (i; j) 2 E, where i represents the source
node and j represents the destination node, and each edge is rendered as i ! j. Edges of
this type can be properly called directed edges or arrows. Two nodes i and j are considered
adjacent if either (i; j) 2 E or (j; i) 2 E, and a graph G is fully connected if all nodes
are adjacent with each other. The in-degree of a node is the number of incoming directed
edges, while the out-degree of a node is the number of outgoing directed edges. A node i is
a parent of a node j if i; j 2 E but j; i =2 E; in such case j is also called a child of node i.
The set of parents of a node j and the set of children of a node i are denoted PAj and CHi

respectively. A path is a sequence of edges joining a sequence of adjacent nodes, with all
2In order for such agents to actually reach the target state other considerations are necessary, we will discuss

these later along with Task Theory
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edges and nodes distinct. A directed path is a path such that the destination node of each
edge in the path is the source node of the following edge in the path. If there exists a directed
path from any two nodes i and j, i is called an ancestor of j and j is a descendant of i. A
directed acyclic graph (DAG) is a directed graph with no directed cycles, that is, for any
two nodes i and j, either there is a directed path from i to j, from j to i, or neither of the two.
Consequently, if (i; j) 2 E then (j; i) =2 E.

2.2.4 The common cause principle

As Belenchia (2021) reminds us, every student of statistics knows well that “correlation does
not imply causation,” although “some correlations do imply causation”(Pearl and Mackenzie,
2018, p. 77). The concept of correlation can be traced back to the works of Sir Francis Galton
in 1888, when he noted that the forearm and height measurements could be represented as
points on a line, which he later called a regression line, which proved reliable in predicting
one of these two values knowing the other (Galton, 1888). The formula for correlation was
later introduced by Karl Pearson, the father of statistics, and the slope of the regression line
was called the correlation coefficient. Correlation is a type of association, the first “step” of
Pearl and Mackenzie’s ladder.
Not all associations are meaningful, however. Take as an example the correlation between

the number of movies Nicholas Cage releases in a year and the number of drownings in swim-
ming pools in the same year (Geraghty, 2018). Does this mean that, whenever Nicholas Cage
releases a new movie, people get excited and decide to go jump in the pool? Or perhaps
Nicholas Cage draws inspiration for his films in years when there are many drownings? This
association might appear moderately strong (having a coefficient of 0.66!), but it just seems
spurious. What may have happened instead is the advent of a hidden common cause, a con-
founder, that somehow caused both events. This is exactly what is stated by Reichenbach’s
Common Cause Principle, asserting that it is not possible to discriminate which associations
are meaningful and which are not without referring to the concept of causation (Pearl and
Mackenzie, 2018, p. 72). In short, what this principle says is that for any association found
in the data, there must be a causal explanation for it. While this statement might appear in-
tuitively true (and in fact, it is in most cases), there are some known exceptions (Belenchia,
2021). Association between variables might arise as, e.g., a consequence of selection bias, or
spurious associations might arise when looking at time-series data of phenomena that are
both developing over time. Finally, some associations appear solely due to random chance.
When none of these considerations apply, the Common Cause Principle provides the only
possible explanation for the observed dependence (Peters, Janzing, and Schölkopf, 2017; Be-
lenchia, 2021, p. 7).

2.3 LTE

According to the definitions of intelligence introduced in Chapter 1, the main purpose of in-
telligence is to figure out how to get new stuff done given limited resources and knowledge,
i.e. achieving things on a budget. AI systems must necessarily be developed taking into ac-
count the limitations imposed by the physical world. If for disquisitions of a purely theoretical
nature we can assume that we have, for example, an infinite amount of time to solve a prob-
lem, or an infinite amount of space to store any piece of information encountered, the same
assumption cannot be made for system that are to operate in the physical world. There is not
an infinite amount of any physical resource or time that can be made available to a system
performing a task. This is exactly what is stated in the Assumption of Limited Time and
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Energy (LTE). This assumption is especially relevant since no task, no matter how small,
takes zero time or zero energy to be carried out (Thórisson).

No task takes zero time or zero energy (Thórisson) If te is a function that returns
time and energy, an act of perception (reliable measurement) te(p 2 P ) > 0 a commit-
ment to a measurement m, com(m 2 M), that is, the measurement is deemed reliable, in
fte(fcom(m 2 M)g) > 0g, and an action te(a 2 A) > 0 to record it (to memory) or an-
nounce it (to the external world, e.g. by writing). It follows deductively that any Task requires
at least one of these, possibly all. For a task T whose Goals have already been achieved at
the time T is assigned to an agent A, A still needs to do the measurement of the Goal State
s, s 2 S, or at least* commit to the measurement of this fact, and then record it. Even in this
case we have te(T ) > 0. Anything that takes zero time or zero energy is by definition not a
Task.

*This could be the case if, for instance, task T1 assigned to agent A at time t1 comes with
Instructions telling A that T1 has already been done at the time of its assignment t1. Sort of
like you were to get a shopping list for use on your upcoming shopping trip where at least
one item was crossed out.

Limited Time & Energy (Thórisson) For all fT; Teg : te(T ) > 0 where Te � W is a
task-environment in a world, T is a task, and te is a function that returns time and energy.

2.4 Extended structural causal diagrams

Before we can introduce the main results of our research on meaning, we need to review the
concept of structural causal models described by Pearl as a useful basis for the development of
generally intelligent systems (Belenchia, 2021). Pearl’s idea is to use such diagrams, together
with a causal inference engine (engine) (Pearl and Bareinboim, 2014, Figure 1), for the cre-
ation of agents capable of causal reasoning (Pearl and Mackenzie, 2018). Peters, Janzing, and
Schölkopf (2017) illustrate possible applications of structural causal models applied to ma-
chine learning and deep learning technologies (Belenchia, 2021). As expressed in Belenchia
(2021), causal structural models can be effectively used in task modeling in a way that is less
related to the characteristics of specific learning systems.
However, the causal calculus used to derive the causal effects of a causal diagram presents

several problems. First, it requires very large, if not infinite, amounts of data in order to
be effectively applied. However, any agent operating in the physical world is expected to
work under the Assumption of Insufficient Knowledge and Resources (AIKR) (Wang, 2012),
according to which, in complex, physical environments, information on how to achieve any
goal or task is partial, incorrect or absent most of the time, so an agent should be able to make
use of whatever is available to it. Causal calculus also does not deal with the observability and
manipulability aspects of the variables. In fact, causal calculus always admits operators that
act on all the variables represented. However, for any given task related to the physical world,
there are variables that are not directly manipulable or observable. The observability and
manipulability of such variables might even vary over time, even as a function of the agent’s
actions. It would then need to be allowed to clearly specify which variables are goals so that
these goals can be verified by the performer at any time. Finally, time and resource aspects
in general are completely overlooked. As mentioned above, this is not permissible according
to AIKR. Time is a fundamental resource for any task that must be performed in the physical
world, along with other types of resources, energy for example, that are inevitably depleted
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during the task’s execution. For all these reasons, the approach of causal calculus seems ill-
suited to be used as an effective reasoning tool in any real time physical world scenario.
To overcome the identified limitations of causal calculus, Belenchia (2021) proposes an ex-

tension of structural causal diagrams that includes attributes to represent the three types of
variables identified by Thórisson and Talbot (2018b) within them: manipulatable variables,
observable variables and goal variables. Each of the variables in a structural causal model can
be assigned multiple types or none at all (in which case we refer to the variable as factor).

Manipulatable variables

The first type of attribute we are going to illustrate are manipulatable variables. A manipu-
latable variable (‘manipulatable’ for short) is a variable that a controller can affect.
In the case of tasks in physical environments, an example of a variable that can be ma-

nipulated directly by the agent is typically the physical interface between the controller and
one of the actuators it controls. Belenchia (2021) presents as an example a simple robotic
arm, whose actions can be modeled by a manipulatable variable that can also take the values
fMove up;Move down;Move left;Move rightg. The domain assumed by the variable is,
in this case, very simple, but it can be made more complex (consistent with what the physical
actuator allows), and a single actuator more can also be controlled by multiple manipulable
variables.
The difference between the variable and the actuator lies in the fact that the variable is an

abstract specification (at best understood as a signal carrying information), while the actu-
ator is physically constrained in terms of space, time, and energy. An actuator consumes a
certain amount of resources, both energy and time, in performing a task, and is subject to the
limits imposed by physical laws, whereas a manipulatable variable could, theoretically, take
on arbitrary values (Belenchia, 2021).
Manipulatables are not necessarily referred to a controller’s actuators, they can be used

to represent entire sub-tasks and sub-goals, namely, aspects of a task the controller already
knows how to perform at some level of precision. Taking another example from Belenchia
(2021), a controller which knows how to open and close doors, may have a manipulatable
variable whose domain consists of the two actions fOpen door; Close doorg , which, in
turn, directly affect a set of variables describing a door. Any part of the task already known
to the controller should be modeled with an appropriate manipulable and should not be part
of the actual task (Belenchia, 2021).
Manipulatable variables are represented in causal diagrams as a variable with at least one

outgoing arrow to another (non-manipulatable) variable representing the affected physical
entity. Moremanipulatablesmight influence – even constraining – the same non-manipulatable,
preventing the execution of certain actions. This is why it is appropriate to speak of partial
manipulability of variables: the manipulability of variables depends on time and the current
state of the task (Belenchia, 2021).

According to the extension proposed by Belenchia, manipulatable variables have no input
arrows in a structured causal model, so the controller is the only source of change in these
variables and it is assumed never to be part of the task.
In a broader sense, manipulatable variables could also be considered those that can be in-

fluenced by the controller indirectly, through other manipulatable variables. We distinguish,
therefore, between direct and indirect manipulatable variables. This difference may come in
handy in distinguishing variables that are manipulatable in general and those that are not
manipulatable at all.
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Observable variables

An observable variable, or ‘observable’ for short, is defined as a variable whose value can
be accessed by the controller. In the case of agents operating in the physical world, con-
trollers receive values of observable variables from their sensors at any given time. Again,
it is good to distinguish between the observable variables and the phenomena to which they
refer: the observable variables are the result of an subjective measurement process3, while the
phenomenon is the objective entity that is perceived. The existence of this difference is due to
the very nature of the physical world, where a sensor will never collect objective values, but
in its readings (limited in quantity and quality by the agent’s experience) noise will always
be present. Migliore è il sensore, migliore sarà la fedeltà della rappresentazione che produrrà,
ma esso sarà sempre soggetto a fattori interni ed esterni alla task che ne modificheranno la
precisione (Belenchia, 2021).
In a causal diagram, observable variables have at least one incoming arrow from the (non-

observable) variable representing the physical entity under observation. As in the case with
manipulable variables, further incoming arrows can be drawn from other non-observable
variables representing other factors that may affect the resulting observation by the sensor.
These additional factors allow the partial observability of variables: they can improve or com-
promise the quality of observation, or even prevent it altogether. In this sense, the observ-
ability of a variable is time-dependent and might change over time during the execution of
the task.

Goal variables

A goal variable is a variable that, possibly together with other variables, contributes to de-
scribing the desirable state toward which an agent tends in its execution of a task. In order for
a goal to be completed, the values of all the variables that constitute the goal must be within
specified ranges. This formulation applies as much to positive goals as it does to negative
ones: in the former case, the goal will be considered successfully completed, while in the lat-
ter case it will be considered failed. There can be multiple goals, positive and negative, in a
task; in this case, the task will be successfully completed if and only if all the positive goals
are successfully completed, while it will be considered failed if even one of the negative goals
is reached.

2.4.1 Time, energy and other resources

Since this work focuses on the development of meaning in the physical world, consideration
must be given to the use of resources by the various functions performed by the agent. In
particular, the previously introduced AIKR raises the need to consider the resources available
for the performance of any task as insufficient. The kind of resources we refer to, considering
the physical world, are at the very least time and energy.
Causal diagrams can be extended to model time series data, thus proving particularly useful

as a tool for studying the temporal aspects typical of any task that is to be completed in the
physical world. Reasoning about causation on variables that refer to differentmoments in time
might be considered easier than timeless data, given that causation can occur only forward in
time (Peters, Janzing, and Schölkopf, 2017). We can imagine causal diagrams rooted in time as
extending indefinitely into the future, thus including an infinite number of nodes. The nodes
of a causal diagram are now denoted by Xj

t , where j 2 f1; : : : ; dg is the index denoting a
3Pattee (2001) is recommended reading for a more in-depth discussion of the concept of “measurement”
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variable in the d-dimensional vector Xt and t 2 Z is the temporal index of the variable. We
can also distinguish between two types of causal relations that can be represented by temporal
causal diagrams: concurrent relations, occurring during the same time step, and consecutive
relations, occurring from a past time step to a future one (a causal relationship cannot occur
from the present to the past, so it is not considered in this list) (Peters, Janzing, and Schölkopf,
2017). According to this classification, we say that a causal diagram has instantaneous effects if
it contains only connections between variables that share the same temporal mark. A causal
diagram that, on the other hand, contains only connections between variables with different
temporal marks is said to contain no instantaneous effects (Peters, Janzing, and Schölkopf,
2017).
Although instantaneous effects are considered impossible from a physical point of view

(in fact, any causal relationship necessarily takes a certain amount of time to occur), this
distinction is necessary because there can be effects that take place over a shorter period of
time than is detectable by an agent’s sensors (Belenchia, 2021). Therefore, to the agent the
event will be instantaneous (think of how the pressing of a switch and the subsequent turning
on of a light bulb appears instantaneous to a human observer).
If time can be represented as a sequence of nodes with associated time indexes, energy and

other resources, on the other hand, are more like fuel that can be consumed a little at a time
to perform actions. Taking energy as an example, it is used to power sensors that sense the
environment and to keep the basic functions of the controller’s body active, but also to act
on the environment itself through the manipulation of manipulable variables. In this sense,
we can associate the action of modifying a variable with a certain amount of energy to be
deducted from the available energy reserve (the same applies to all other kinds of resources)
(Belenchia, 2021).

2.5 Task Theory

As both Thórisson, Bieger, Thorarensen, et al. (2016) and Belenchia (2021) clearly express,
tasks are of primary importance for Artificial Intelligence research. AI systems are built to
carry out tasks, whether they are performed in partially or completely known or even un-
known environments. Tasks are not only a generic pivot around which AI systems are built,
but are of decisive relevance to the careful design, training and evaluation phases of any AI
system being implemented. The lack of a task theory in AI has led to the use of extensive
domain knowledge to guide the design of task-specific systems, targeting a limited variety
of environments, and the use of psychological theories of human intelligence for evaluation,
with very poor results. Furthermore, for the development, training and evaluation of gener-
ally intelligent systems (the ones we ultimately care about) domain knowledge and tests like
e.g. the Turing test or IQ tests don’t nearly cover the wide variety of situations these systems
would be facing and a task theory that can model a broad range of tasks and environment
becomes absolutely necessary (Thórisson, Bieger, Thorarensen, et al., 2016). Despite its rel-
evance to the field, there is still no comprehensive general framework that encompasses all
aspects of tasks, but significant work has been done in recent years by Thórisson, Bieger,
Thorarensen, et al. (2016), Bieger, Thórisson, et al. (2016), Thórisson, Bieger, Schiffel, et al.
(2015), Eberding et al. (2021), and Belenchia (2021) that has provided additional insights, al-
lowing us to move even closer, bit by bit, to defining such a theory. Below I introduce the
main insights and results set forth in the aforementioned works, which will also be the start-
ing point for the work laid out in this paper. With reference to the AI Constructivist doctrine
(already mentioned in Section 1.2) the ideas expressed in the referenced works converge into
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what the constructivists refer to as “Task Theory” (with capital ’t’s – not to be confused with
a generic “task theory” – with lower-case ’t’s).

2.5.1 Uses and requirements of a task theory

The three main aspects where a task theory would be most useful are evaluation, training and
design (Thórisson, Bieger, Thorarensen, et al., 2016). The evaluation of AI systems is a way
of measuring the progress of a system during its development by making comparisons with
earlier versions and other systems. The difficulty in evaluating AGI systems (the ones we are
ultimately interested in) lies, among other reasons, in the need to measure not performance
on a specific task, but to provide a somewhat general measure of the cognitive abilities of such
systems. A task theory would enable the evaluation of different systems, at different stages
of development and on different tasks, by relating the tasks’ parameters to attributes like
determinism, ergodicity, continuity, asynchronicity, dynamism, observability, controllability,
periodicity and repeatability (Thórisson, Bieger, Thorarensen, et al., 2016). In addition, a task
theory would make it easier to construct both new task-environments and their variations
and scaling them up or down in complexity. The creation and tuning of task-environments is
also relevant to the training phase of AI systems. Finally, as wementioned earlier, the design
of AI systems today is mostly a matter of trial-and-error, intuition and domain knowledge.
A task theory would help and speed up the design of narrow-AI systems by allowing the
prediction of task requirements, such as time, energy or other resources. A task theory would
also come with the ability to compare and describe properties of tasks (Thórisson, Bieger,
Thorarensen, et al., 2016).
Summing up the above discussion, in (Thórisson, Bieger, Thorarensen, et al., 2016) the

authors lay out the requirements for a task theory:

1. Comparison of similar and dissimilar tasks;
2. Abstraction and concretization of (composite) tasks and task elements;
3. Estimation of time, energy, cost of errors, and other resource requirements

(and yields) for task completion;
4. Characterization of task complexity in terms of (emergent) quantitativemea-

sures like observability, feedback latency, form and nature of information/in-
struction provided to a performer, etc.;

5. Decomposition of tasks into subtasks and their atomic elements;
6. Construction of new tasks based on combination, variation and specifica-

tions.

A task theory fulfilling these requirements is expected to allow the development of frame-
works that can construct task models, which would be suitable for, e.g., produce variants of
tasks and execute tests in batch mode while providing huge amounts of data for the AI system
being tested. The theory should be also grounded in physical reality by including and address-
ing the aspects of energy, time and other resources in tasks (Thórisson, Bieger, Thorarensen,
et al., 2016).
In the following sections we are going to outline the principles and developments of con-

structivist Task Theory, which to date represents perhaps the only attempt to define and
organize in a scientific and formal manner the basic requirements and concepts for a theory
of tasks.
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2.5.2 Foundational concepts

At the core of a task theory reside the fundamental concepts of environment, state, agent,
goal, problem, and task. For these concepts to effectively support (modular) construction
and analysis of tasks, they must be defined in a way that does not stray too far from their
intuitive notions (Thórisson, Bieger, Thorarensen, et al., 2016). We already introduced the
notion of agent and at least mentioned the other concepts, therefore we will provide a more
comprehensive discussion of these other concepts here.
At the highest level of our conceptual framework for task-environments lies a World, de-

noted as W. This world is an interactive system comprising a set of variables V , dynamics
functions F , an initial state S0, domains D representing potential values for those variables,
and a potentially empty set of invariant relations between the variables R. In a concise no-
tation, we express this as W = hV; F; S0; D;Ri. The variables of V (taking values in their
respective domains) represent particular aspects of the world that may change or hold a par-
ticular value. The dynamics functions describe how the world transitions from a state to
another. Invariant relations are Boolean functions on variables that always remain true, re-
gardless of the possible states in which the system might ever find itself. Environments are
subsets of the variables, domains, functions, etc. of the world, like ‘views’ on the world itself.
A concrete State S is a value assignment to all variables of a system. A state is said to be
partial if it only defines assignments to a subset of the variables of a system. Partial states are
more practical, in the sense that any agent will almost always deal with partial states: noise
and partial observability make it impossible, in most cases, to knowmost values with absolute
precision (Thórisson, Bieger, Thorarensen, et al., 2016). A Goal state is a (partial) state that
an agent should reach or avoid (failure state). A problem is specified by (at least) an initial
state, desirable goal states and failure states. The solution to a problem is a sequence of actions
resulting in a path through the state space reaching all of the desirable goal states and none
of the failure states. If a solution to a problem P is known, P is said to be a closed problem.
Finally, we define a Task as an assigned problem, that is, a problem assigned to an agent to
perform. A task is performed successfully once a path that solves the problem can be found
in the history of the world’s states. Since tasks are ultimately performed in environments and
environments are such an integral part of the task that they change the nature of the task
itself, we talk of the Task-Environment pair.
In addition to the previous concepts is the notion of causality, which we have already ex-

tensively presented and discussed in the previous sections. Causality, as already expressed,
is fundamental to being able to perform a task, as the simple correlation identified between
two or more variables may not be of practical use. Picking up on the example from earlier
about the correlation between the number of movies starring Nicholas Cage and drowning
incidents in swimming pools, if one were to rely solely on the correlation between these two
events, one might think that removing Nicholas Cage from the Hollywood scene and prevent-
ing him from starring in movies would also succeed in reducing the number of pool accidents.
Or, again, that preventing a rooster from crowing would result in a few more hours of sleep
each night. The concepts of causal models and diagrams are also good candidates for the
representation of task-environments themselves, as they allow for the representation of as-
pects like the task-environment’s variables, goals, constraints, dynamics functions, etc. We
will introduce later, in Section 2.4, an extension of causal structural diagrams suitable for this
purpose.
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2.5.3 Intricacy and Difficulty of a task

In his work, Belenchia (2021) lays out and discusses some key principles of tasks. We will
briefly report these principles, providing limited discussion when deemed necessary, as the
rationale and implications of each of the proposed statements are very thorough and do not
belong in this paper (for an in-depth discussion we recommend reading Belenchia (2021)).
In short, Belenchia states that the environment, including the body of the controller, is part

of the task. He also argues that the level of detail is part of the task, meaning that any task is
limited to its level of detail and the same task, presented at another level of detail, is a different
task. He further claims that a controller’s sensors and actuators define the limits of relevant
spatio-temporal task detail, so the finest possible level of detail for a task depends on what
the body allows the controller to observe and manipulate. Therefore, tasks described at more
fine-grained levels of detail than what the controller’s body allow would be experienced by
the controller at coarser level of detail. Finally, Belenchia asserts that a task is unaffected by
variables which do not constrain its solution space.
Based on these assumptions, Belenchia defines the concept of task Intricacy. Intricacy is

a measure of a task’s “complexity” based based on objective, purely physical and measurable
parameters. By “complexity” is meant the “complicatedness” of a task, rather than the classical
computer science measure of algorithms.

Definition 2.5.1 (Intricacy of a task T ). The intricacy of a task T is defined as the measure
of a task’s “complexity” based purely on physical, measurable parameters. It can be measured
in either of the following ways:

1. The minimal number of relational models required to capture the subset of Rin
T which

includes only relations on the causal path to some goal.4

2. The number, length and type of mechanisms of causal chains that affect observable
variables on a causal path to at least one goal.

3. The size of the smallest solution tree that can be constructed where all nodes are ma-
nipulatable variables.

4. Size of the solution space relative to the number of possible action sequences.

Intricacy is defined in relation to the physics of the task. it can be intuitively seen as a measure
of what physical mechanisms need to be known by any intelligent controller to perform the
task in the given environment (which includes the controller’s body). The task’s intricacy is
invariant on the initial values of the task’s variables (Belenchia, 2021).
Given this objective measure, it is possible to talk about the subjective difficulty of a task

for the specific agents performing it. From the fundamental principle concerning the effect
of superfluous variables on the task, it follows that the difficulty of performing a particular
task is not uniquely determined by the task itself (i.e. its intricacy), but also depends on the
performing agent (Belenchia, 2021). Some controllers may be better or worse at performing
the task than others for a variety of reasons, from having performed similar tasks in the
past, to being faster (or slower) at learning cause-and-effect relationships, and even sensor
accuracy. Difficulty is therefore dependent on both the task and a controller.

Definition 2.5.2 (Difficulty of a task T for a controller C). The difficulty of a task T as-
signed to a controller C is defined as the cross product of the task’s intricacy and the level of
understanding of the performing controller: {T � C}.

4The models referred by this definition are of the type described in Section 3.4 and byRin

T is meant the set of
inward facing (causal) relations of the task (see Section 2.6).
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2.6 Thórisson’s Theory of Understanding

A concept closely related to meaning is understanding. We consider the ability to understand,
e.g., the meaning of the actions we take or the situations we find ourselves in to be important,
and , when we assign a task, we tend to assign to someone who understands what they have
to do. An artificial agent capable of performing a task repeatedly and reliably often makes
us wonder whether the agent “understands” what it is doing or not (Thórisson, 2022e). In
the context of this thesis the concept of understanding that is used comes from the theory
of pragmatic understanding laid out in Thórisson, Kremelberg, et al. (2016) and Bieger and
Thórisson (2017). This theory is “pragmatic” in that it focuses on the practical utility of having
a certain level of understanding to complete tasks (Thórisson, Kremelberg, et al., 2016).

Understanding is not a skill understood in a general sense, but is always considered in
reference to a phenomenon. A phenomenon is defined as � � W where W is the world is
composed of a set of elements f'1; '2; :::; 'n 2 �g of various types, including relations R�

that bind elements of � with each other and with elements of other phenomena (Belenchia,
2021). These relations are of several types (causal relations are especially important, but we
consider also, for example, mereological relations) and can be partitioned in two sets: the set of
inward facing relationsRin

� = R�\ (2
��2�) and the set of outward facing relationsRout

� =
R�nR

in
� . An agent understanding onlyRin

� can be said to understand the phenomenon� but
not its relation to other phenomena, while an agent understanding onlyRout

� understands the
phenomenon’s relations to other phenomena but is unable to understand its inner workings
(Belenchia, 2021; Thórisson, Kremelberg, et al., 2016).
An intelligent agent’s understanding of a phenomenon is related to the models of the phe-

nomenon that the agent possesses and creates. These are a particular type of models, in that
they support certain operations with respect to the phenomenon in question. A set of models
M� for a phenomenon � consists in information structures that can be used to (1) predict �,
(2) produce effective plans to achieve goals with respect to �, (3) explain � and (4) re-create
�. The better these models represent elements ' 2 � including their relationships R�, the
greater is the accuracy of M� with respect to � (Thórisson, Kremelberg, et al., 2016). Thus,
considering an agent A’s knowledge to be a set of models M , Thórisson, Kremelberg, et al.
(2016) define understanding as:

Definition 2.6.1 (Understanding). An agent’s A understanding of phenomenon � depends
on the accuracy ofM with respect to �,M�. Understanding is a (multidimensional) gradient
from low to high levels, determined by the quality (correctness) of representation of two main
factors inM�:

U1 The completeness of the set of elements ' 2 � represented byM�.

U2 The accuracy of the relevant elements ' represented byM�.

The understanding of a phenomenon � is then evaluated over the following four dimen-
sions, ordered by the increasing level of understanding required to master each:

1. To predict �,

2. To achieve goals with respect to �,

3. to explain �,

4. To (re)create �.
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Each of these capabilities can assume a value in the range [0; 1] as a function on U1 and
U2 (Thórisson, Kremelberg, et al., 2016), where 0 represents the absolute lack of ability and
1 represents achieved perfection. A good level of understanding can only be achieved by
leveraging all four of these skills.

Prediction To predict a phenomenon is, equivalently, to infer the values of some variables
given the values of other variables. Prediction does not require representation of causal rela-
tionships, but it can be done using just correlations. In this sense, Thórisson, Kremelberg, et al.
(2016) refers to prediction as the “crudest form of evidence for understanding”. Predictions can
occur forward, backwards or parallel in time, or even all at once (Bieger and Thórisson, 2017).
Prediction based on correlation involves using the relationship between two or more vari-
ables to make informed guesses about the future values of one variable based on the known
values of another. Correlation measures the strength and direction of a linear relationship be-
tween variables, providing insights into how changes in one variable might be associated with
changes in another. If a correlation is found between a manipulatable variable (independent
variable) and another variable of interest (dependent variable), it opens up the possibility of
influencing the dependent variable by intentionally manipulating the independent variable.
Remember that correlation does not imply causation: establishing correlation between two
variables simply means that they tend to vary together, but it does not necessarily mean that
one variable is the cause of the other. As Bieger and Thórisson (2017) proposes, the predic-
tive ability of a system can be tested by asking questions of various kinds. Specifically, the
tests involve the subject under test possessing or receiving as input information I of the form
I � (V; t; S), where V is a variable and S is a state at a specific point in time t. A series of
questions are then asked, whose formulation consists in presenting subject under test with
a second set Q consisting of tuples of the same form as the input, in which, however, some
values may be missing. For example, if the states S are omitted in the tuples ofQ, the request
that is made to the subject is to identify “possible and likely joint state-value assignments”
(Bieger and Thórisson, 2017, p. 3) to be associated with the variables given at time t. Another
type of question that can be asked by appropriately modifying the set Q is to ask whether,
given other values for the same variables and a time t, those values can be assumed by the
variables at time t or not. In a similar way, omitting the time-related information would be
equivalent to asking at what point in time the variables obtain (if possible) these values. Other
combinations are possible, even omitting a combination of variables, values, and time (Bieger
and Thórisson, 2017).

Goal achievement Mere observation of correlations, sufficient for prediction, proves in-
adequate for achieving task goals or accurately predicting the effects of actions on variables
(Thórisson, Kremelberg, et al., 2016; Belenchia, 2021). Goal achievement is made possible by
knowledge about the causal relations on the variables that directly affect the goal variables
(variables representing the goal state(s)) of a task. In other words, achieving goals requires
knowledge of how certain variables can be controlled by the agent. The type of variables
we mainly refer to is, of course, manipulatable variables. The variables are part of a model
of interaction with the world that can be adopted by the agent to produce plans on how to
achieve a goal by employing that model. In order to measure goal achievement ability, it is
therefore necessary tomake use of tasks, situating the learner in a relative environment. Since
we are talking about goal achievement with respect to a phenomenon �, the task in question
will have to be related to the phenomenon in some way. Assessment of the ability to achieve
goals starts with constructing task-environments from different sets of variables so that there
are causal connections between the variables and the goals. This activity is supported by the
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concepts and methodologies from the work on Task Theory. The task-environment specifi-
cation obtained in this way is defined in terms of variables, some of which can be observed
and others controlled by the agent. This description allows us to abstract from details related
to specific implementations (Thórisson, Kremelberg, et al., 2016). The ability to achieve goals
will ultimately be related to the ability to produce effective plans to achieve a goal related to the
phenomenon �, where an effective plan is one that can be proven, through implementation,
useful, efficient, effective, and correct (Thórisson, Kremelberg, et al., 2016).

Explanation Moving on in our "ladder" of understanding, explanation is an even more
incisive element in determining an agent’s understanding of a phenomenon. Indeed, it is pos-
sible for the predictive model of a phenomenon, while not containing causal representation
information, to capture certain aspects of it accurately enough to enable the achievement
of goals. The further addition of explanation to the dimensions of understanding allows for
a more precise assessment of an agent’s ability to capture causal relationships (Thórisson,
Kremelberg, et al., 2016). The explanation of a phenomenon requires, even more than goal
achievement, the ability to understand the causal relationships that enable a phenomenon, in
that the precise explanation of a phenomenon requires the identification of a set of necessary
and sufficient elements that characterize it (Bieger and Thórisson, 2017). In particular, this
process of explaining a phenomenon can occur at different levels. As we introduced in the
section on Task Theory, the level of detail considered changes the nature of a task. Assessing
a controller’s explanations of a phenomenon on multiple levels of detail is one way to identify
the controller’s actual understanding of that phenomenon in relation to the maximum extent
of the explanations provided(Bieger and Thórisson, 2017).

(Re)creation The ability to create or recreate a phenomenon is the last of the four dimen-
sions on which meaning is based and probably the most important (Thórisson, Kremelberg,
et al., 2016). The ability to create a phenomenon is understood here as the ability to produce
models containing the necessary and sufficient features of the phenomenon, which have al-
ready been considered when evaluating the ability to provide explanations. We talk in this
case of re-creating phenomena from a theoretical, rather than a practical point of view: an
example of this is the models developed to date to explain the laws of the universe (Bieger
and Thórisson, 2017).
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CHAPTER 3

On Defining Meaning

To properly analyze and propose a theory of meaning generation, some fundamental concepts
must be dissected. Starting from the analysis of the concept of meaning in common usage,
the following chapter will:

• Argue for the fundamentally pragmatic nature of meaning;

• Discuss some typical features meaning, which will be later formalized, and

• Explain how causality, causal chains, models, and reasoning are linked to meaning.

This somewhat “empirical” inquiry on the nature of meaning, supported by the rigorous the-
oretical framework introduced in the previous chapters, will progressively clarify the concep-
tual basis on which a formalization of meaning generation shall be grounded.

3.1 The pragmatic nature of meaning

The importance of considering the concepts of causal relations and task theory set forth earlier
lies in the essentially pragmatic, causal, and dynamic nature of meaning. Fundamentally, the
assumptions to keep in mind in our research are twofold, namely that 1) we are addressing in-
telligent, autonomous systems situated in a task-environment, and 2) we intend to equip such
systems with mechanisms that support their work of performing tasks. The first assumption
is related to the scope of our research. With the idea of making a contribution to research
in the field of Artificial Intelligence, we refer to a specific type of intelligent systems at have
already been the focus of previous studies. Thus, exploring the concept of meaning in the
context of previous studies on these intelligent systems allows us to lean on an established
theoretical framework and build on its results using a proven methodology. The second as-
sumption is a consequence of the first. The intelligent systems under consideration, which
are also the focus of this research, are intended to perform tasks. The same constructivist con-
ception of ‘intelligence’ understands it as a tool for dealing with practical needs. The ability to
understand and generate meaning is a typical feature of intelligence, and, therefore, it should
retain the same pragmatic nature. To have systems capable of receiving and understanding
instructions to perform tasks requires the ability to translate instructions into goal states and
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to reason about achieving those states. Systems that cannot process instructions this way
are hardly identifiable as “intelligent”. Therefore, analyzing meaning from a pragmatic point
of view is essential for developing autonomous, situated, intelligent agents that can operate
effectively in complex, dynamic environments.

3.2 Approaching meaning

Having previously introduced the fundamentals of Task Theory, learning by reasoning, and
understanding, it is now possible to discuss the concept of meaning. In order to give a more
rigorous definition of meaning, we must first get an idea of what meaning actually is. Because
it is such an ingrained concept in common usage and used almost unconsciously, the reader
is unlikely ever to have asked “what does meaning actually mean?", i.e. “what is the meaning
of meaning?". This is a question that might appear to be of exclusively philosophical interest,
equal to questions such as “what is the meaning of life" and the like. However, the search
for meaning is a central activity in performing tasks and achieving goals. For example, the
reader will be familiar with crossword puzzles, word games where solvers enter words or
phrases into a grid according to a set of clues. In solving the crossword puzzle, it is not
uncommon to encounter clues such as “The center of Rome – 2 letters". At first glance it
might seem that a word such as Colosseum” would fit the part of the clue that concerns the
center of Rome, but the 2-letter limit contradicts this intuition. In fact, the clue is written in
a deliberately ambiguous manner to confuse the solver and refers to the center of the word
‘Rome’, corresponding to the letters “om”. Grasping the meaning of the clue allows the player
to solve both this particular crossword puzzle and future ones that may contain similar clues.
Let us consider a different example. Suppose you are reading the latest news and learn

about a forest that recently caught fire: knowing that the forest has gone up in flames due
to weather-related causes is different from knowing that a forest is on fire due to arson. The
causes of the event have different implications: in the former case, the fire could have been
caused by lightning strike, volcanic eruption, spontaneous combustion, or the action of other
weather agents, and would require the intervention of firefighters and civil defense to limit
the damage; in the latter case, the cause of the fire is attributable to the action of one or more
people, committed for a wide variety of reasons (from political dissent to profit-seeking from
the destruction of forest areas, etc.1), and, in addition to the intervention already mentioned,
would cause an investigation to be opened to identify and arrest the culprits. Even different
situation would be to be in the forest at the time of the fire outbreak and having to leave in
a hurry so as not to get hurt. In other words, the meaning of the forest fire appears different
depending on the person’s experience of it, because the event has different repercussions
on each person’s daily life. From these examples we can already derive some aspects that
characterize meaning.

3.3 Dissecting the Concept of ‘Meaning’

Based on how the concept of ‘meaning’ is used in everyday language, a number of its features
can be discerned and isolated, in preparation for proposing a theory of ‘meaning generation’
that is detailed enough to be implementable in an artificial intelligence system.
Based on the general use of the concept, and in light of the related work (see Chapter 2),

the following features are considered necessary (but not necessarily sufficient) to capture the
1For an overview of the various causes (natural and otherwise) of forest fires, see Civile (2008) from the Italian

Department for Civil Defense

40



Chapter 3. On Defining Meaning Dissecting the Concept of ‘Meaning’

phenomenon of ‘meaning’.
First of all, we recall that the meaning associated to a concept or an event is typically a

description or a relationship that connects the concept or event to another subject. Meaning
is not an intrinsic property of a given “datum” (where a datum could be an event, a perception
from a sensor, or even the result of an internal reasoning process), but emerges from the
perspective of a subject who generates or associates meaning with that datum. Let us consider
the example event of rocks rolling down a hill. The event does not carry meaning on its own,
but it has some meaning to those who witness it, and it varies depending, for example, on
where that observer is in: a person in the valley who sees the rocks rolling towards him will
have a different reaction from someone at the top of the hill. The subjectivity of the meaning
associated with the rolling rocks depends both on contextual aspects, such as location in
space, but also on the perception of the dangerousness of the event based on both experience
and the ability to predict how the system will evolve: anyone who has had experience with
rolling objects and heavy objects will easily understand that a heavy rolling object could cause
serious damage. Take as another example a golf game in which two players are competing for
a major title and the score is 6 to 14. A spectator watching the game but unfamiliar with the
sport might think that, as is the case in many other sports, the player with the advantage is
the one with the higher numerical score. Therefore, when the player with the lowest score is
proclaimed the winner at the end of the game, our spectator will realize they have associated
a different meaning with the same numbers. Numerical values read on a game board take on
meaning based on associations to other concepts, such as similarity to the score of a soccer
game. In this sense, the focus of a theory of meaning shifts from the datum to the processing
subject who possesses a representation of the datum that it uses to derive derive connections
with other known facts.

1. ▷ The meaning of a datum is dependent on subjective representations.

An excellent example that helps us highlight another characteristic of meaning is the one
reported by Thórisson, Kremelberg, et al. (2016):

“If I hear an announcement that the gate to the flight to my vacation desti-
nation has closed, this will mean something very different depending on which
side of the gate I am on at that point in time; in one case I may start crying and
the other not. And if I have a drink in either contingency it will likely be for very
different reasons.”

The meaning associated with the event of gate closure has temporal relevance, as the same
event, shifted in time, results in a different effect. If, for example, the gate closure was moved
earlier by two hours, it would cause additional organizational inconvenience to passengers.
But the same meaning in this example also has a spatial connotation, in that the position in
space of the passenger (in this case, inside or outside the gate) determines his or her discour-
agement. The same can also be said about the previous example of the rolling rocks: being in
the valley before or after the rocks fall does not constitute a risk, just as one is equivalently
safe by being completely away from the valley in question at the exact moment the event
occurs.

2. ▷ Meaning is dependent on the spatio-temporal context.

Meaning is related to a more general set of situational elements other than space and time.
Irony and sarcasm are complex forms of communication that involve conveying meanings in
a way that is not literal or contrary to what is actually said. Both require additional effort to be
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understood, as they involve a deeper level of understanding and an awareness of the duality
between what is being expressed and what is actually meant. Communication in general, not
just verbal communication, is dependent on the broader context in which one is embedded.
To a strange hand gesture that I have never seen before I can associate different meanings
if I am meeting with a friend of mine or if I am, for example, stuck in traffic and have just
performed a risky maneuver. In all these cases, meaning is not simply identifiable in a well-
defined and circumscribed set of stand-alone data, but must be looked for and grounded in
a broader context. As the context changes, so does the meaning associated with data and
events. Hearing ‘great job’ after breaking a cup or after solving a complicated problem leads
to the reconstruction of different meanings. The situational context in which data and events
occur is therefore inseparable from meaning.

3. ▷ Meaning is related to the situation2.

The previous claim about the situation can be further expanded with the concept of goals.
Agents located in a task-environment are involved in performing tasks whose outcome (suc-
cess/failure) is defined by the goals associated with those tasks. If positive goals are achieved,
then the agent has succeeded; if, on the other hand, negative goal states are reached, or if no
goals are achieved in the time period relevant to the performance of the task, then the agent
has failed. In any case, given a space-time context an agent will have assigned tasks and, con-
sequently, goals to achieve. Depending on the goals, the behavior of agents in environments
changes. Taking the example from earlier, if my goal is not to catch a flight because I just got
off the plane and am on my way home, the announcement of the gate closing will have no
impact on my mood. It appears, then, that another aspect on which meaning depends is goals.
The gate closure event has some relevance3 only when it affects one of the goals of the subject
toward which the meaning is directed. Of course, it is possible for one event to affect more
than one goal. Suppose then that we were able to catch our flight to go on a relaxing vacation
that we had been planning for some time. Just before we left, we also received a promotion at
work, getting a position of greater responsibility. As soon as we arrive at our destination, we
learn that our boss will also be in the same destination as us to attend a business conference.
The news affects both the vacation and our work experience, as the trip is not only an oppor-
tunity for personal relaxation, but can also become an opportunity to establish professional
relationships with the boss, discuss the promotion, and show commitment. In this way, the
news influenced the meaning attached to both the trip and the promotion, connecting them
in an unexpected way.
In this sense, a datum has more than one meaning if it influences multiple goals, or influ-

ences the same goal in different ways.

4. ▷ Meaning is related to goals.

At the beginning of this section, we restated a generic definition of meaning, as it is un-
derstood in common sense, which identifies it as a description or implication. What emerges
from our discussion so far is that meaning is mainly related to the connections between da-
tum, situation and goal via the subjective representation that the subject fromwhich meaning

2Situation and context are used here generically, but with different connotations. The notion of context will be
formally defined later in relation to the environment, while the concept of ‘situation’ is used here in the common
sense of the term to refer to a broader context consisting not only of spatio-temporal references, but also, for
example, cultural aspects and the like, and thus it will not be formalized

3Weuse “relevance” in this context in the common sense of the term; later wewill give amore formal definition
of “relevance”
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is generated has of all these aspects. In fact, leaving all these aspects unchanged, it is the rela-
tionships that connect them that make up the meaning. Two different aspects influence these
relationships: (a) knowledge and (b) the process of generating relationships.
In the case of agents endowed with cumulative learning (a notion introduced in Section

2.1.3), i.e., the type of agents we refer to in this thesis, we know that every piece of informa-
tion the agent receives through its sensors is immediately passed to the knowledge synthesis
process. Therefore, all the information that the agent receives from any source ultimately
flows into its knowledge. Lack of knowledge concerning a phenomenon obviously prevents
us from being able to relate back to that phenomenon, or, more generally, to the aspects of
that phenomenon that have no representation in our knowledge. This is why, for example, not
knowing certain aspects that characterize jazz music or contemporary art makes it impossible
to grasp their meaning (here understood as the reason for the existence of such things and
the practical utility they should have)4. However, the fact that some knowledge is not in the
mind of the subject generating meaning does not mean that certain connections cannot exist
in an absolute sense; the subject’s view of the world will always necessarily be incomplete of
some aspects.
In the second case, on the other hand, even assuming that we possess all the necessary

knowledge, there is no guarantee that the meaning of something is understood by the gener-
ating agent. This leads us to have to explicitly introduce a second claim, namely that meaning
is the result of a process that generates it. So far we have only hinted at the idea of meaning as
the result of a meaning-generating process, and, in presenting the characteristics of meaning,
we have mentioned again and again that it is recreated by the subject in some way. Instead,
we now claim that in order for meaning to be explicitly accessible to an agent, it must be
generated as the result of a process. The fact that connections between two elements (e.g., a
datum and a goal) exist and are identifiable from the models present in the agent’s knowledge
does not imply that this agent will be able to identify these connections, since the meaning
generation process implemented by the agent may not isolate these connections among the
set of all possible connections present in the agent’s knowledge. Recall that the agent is sub-
ject to AIKR, so the resources at its disposal (computational, but not only) are to be considered
insufficient5: a running process with limited resources available will produce limited results.
The result of the meaning generation process is some explicit representation of meaning, that
is, an additional element of knowledge that enables the agent with the ability to achieve its
goals given given representations of a datum and context along with its own knowledge.

5. ▷ Meaning is lies in the relationships between the elements of knowledge.

6. ▷ Meaning is the result of a meaning generation process.

Two aspects that the meaning generation process should cover are the production of predic-
tions and the reconstruction of the causes of a given phenomenon. Prediction-making occurs
when the influence of a datum on goals is reflected not in the immediate, but at a later mo-
ment in time: in this case, the connection between datum and goals is not directly identifiable
in the agent’s knowledge (e.g., as a connection between two different models), but must be
produced from those models that, by being executed multiple times over time, allow the goals
to be achieved.

4In this case the understanding of the meaning of art in its various forms is simply used as an example to
illustrate the reconstruction of meaning and has nothing to do with a person’s judgment of these things, nor is it
meant to be a comment against of those who criticize jazz music or contemporary art for the most diverse reasons

5This is because, otherwise, an agent might assume that it has an infinite amount of resources at its disposal
and come up with impractical solutions to problems
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Cause reconstruction of a datum, on the other hand, is useful when the datum is linked to
the goals not through its direct manipulation, but by a common cause that influences both
the datum and the goals 2.2.4. These two types of connection-seeking movements can thus
imply deductive (forward) and abductive (backward) reasoning starting from both datum and
goals.

7. ▷ Meaning involves prediction and identification of causes.

The nature of meaning is such that it does not remain unchanged, but varies over time due
to various factors, including personal experiences (this is especially the case with situated
systems operating in the physical world), learning from teaching, reflection, and changes in
circumstances. Positive or negative events can influence our perception of words and con-
cepts, altering the meaning associated with certain situations. Over time, societies go through
cultural and social changes that affect the meaning of social conventions and traditions. Re-
flecting on past events or reasoning about events that might have happened can lead to a
reworking of the meaning attributed to those events. Finally, newly acquired information can
influence our perspective of past events. These are but a few examples of situations where
the meaning of something, whether be it an action or a concept, changes. Because it is related
to both the subjective representation (a set of models) of a datum, context, the goals of the
system, and the set of relationships that connect them, meaning changes whenever at least
one of these three elements changes completely or in part. Therefore, meaning is defeasible
and revisable knowledge.

8. ▷ Meaning is a type of actionable information that is subject to change.

From past work on Task Theory, we know that the level of detail is part of a task (Belenchia,
2021). In fact, any phenomenon or task of the world can be described at different levels of
detail, from highly detailed descriptions (down to the atomic or even subatomic level) to very
abstract ones (Belenchia, 2021). Speaking of tasks, Belenchia (2021) argues that the same
task, proposed at a different level of detail, is not the same task, and cites the example of a
task related to an electronic circuit. An electronic circuit can be described at the level of its
electronic components, at the even lower level of the chemical reactions in its circuits or at
the higher level of the implemented logic circuit. The task of obtaining some output in such
circuit is very different according to the level of description being used, because effectively the
variables and the mechanisms changed together with the level of detail. Therefore variations
in the level of detail effectively result in different tasks (Belenchia, 2021). Having thus tied the
meaning of an event to its representation and the goals of the meaning-processing agent, it
is obvious that at a different representation of the event, or at changing goals pursued by the
agent, the calculated meaning will be different. In this sense, there is a limit imposed by the
agent’s sensors (the granularity of the sensors) that defines the level of detail perceived and,
consequently, the perceived level of detail of both a given task and the meaning computed by
the agent. Thus, there is always a limit to the level of detail an agent can bring back in the
meaning it produces, and this limit is imposed by the agent’s own embodiment.

9. ▷ Meaning is related to the level of detail.

What emerges from the above discussion is intended to capture the general intuition of the
concept of meaning which enables us to go on into more detail and define more precisely the
meaning generation process.
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3.4 Models for knowledge representation

A model is a representation of something – the thing being modeled. More specifically,
in computational systems, a model is structured information that, behaving similarly to the
modeled subject – although of a “simpler” form – can be manipulated in order to obtain useful
information (e.g., answers to a question) (Belenchia, 2021). As mentioned earlier, the limited
nature of energy, time and resources available to any system (intelligent or not) prevents such
systems from recording, with absolute accuracy and without loss of information, their every
experience, so that they can later draw on a huge database the knowledge required to perform
their tasks. A model will therefore be as good as it is useful to the agent when manipulat-
ing the model – especially when performing tasks (Thórisson, 2020c). For example, reducing
the concept of car to “a tool for moving things or people” does not contribute significantly
to solving the problem of going, for example, to your office for work or to a supermarket
to pick up groceries. In fact, it could be said that, according to such a model, a car is fully
equivalent to a bicycle or a bus, as all of these are means of ‘moving around’. Here, by in-
troducing the concept of fatigue as related to the use of important life resources that need
to be optimized, it could be inferred that moving by car requires less effort than moving by,
say, bicycle, exposing additional decision factors. Introducing the further concept of spending
and related connections generically linking money (here understood as another resource to
be optimized) to the survival of the individual, one could further infer that moving by car is
much more ‘wasteful’ than moving by bus, further guiding the choice of transportation – a
necessary choice to achieve some other purpose – toward one path rather than others.
But the accuracy of a model is not the only aspect one should focus on when evaluating

its goodness: in fact, by itself, a model is useless without an appropriate process that em-
ploys it. Therefore, aspects of the design of such a process also become relevant (Thórisson,
2020c). Models encode actionable information, in the sense that they can be used to ‘get stuff
done’, e.g., predicting future states, derive the causes of observed events, explain phenom-
ena, etc. The process that enables all of these things can be abstracted as a sequence of steps
somewhat similar to the control loop we saw earlier: retrieve relevant models, apply them to
situations to derive predictions, perform some action based on the model’s predictions, and
monitor the results (Belenchia, 2021). Performance monitoring is a crucial element of this
mechanism: models that consistently enable goal achievement will then be deemed impor-
tant, while models that perform poorly (i.e., more unlikely to lead to goal achievement) will
be discarded, so that over time, only the most useful models are kept in memory. Consider-
ing such a mechanism, it can be said that these models can constitute a non-axiomatic and
defeasible knowledge base (Thórisson, 2020c).
So far we have clarified the role of models in the representation of knowledge and as a start-

ing point for the execution of actions to achieve goals. Let us now introduce some relevant
qualities of models suitable for meaning.

Bi-directionality With reference to the pragmatic nature of meaning, we intend to refer in
this thesis to a particular type of models – bi-directional models. By “bi-directional” we mean
that these models, as constituted, can be ‘read’ and interpreted both for predictive purposes
and in a restorative manner. More precisely, we refer to the forward-chaining execution of
such models when they produce predictions and backward-chaining execution when, starting
from goals, a path of states is traced back to an executable action (Thórisson and Talbot, 2018a;
Thórisson and Talbot, 2018b). This ability to interpret (and produce actions accordingly) mod-
els in two ‘directions’ is fundamentally related to our pragmatic and goal-oriented intuition
of meaning. Meaning, in a practical sense, is related to the causes and consequences of certain
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phenomena, so it is important to allow exploration in this sense of causes and consequences
in order to determine the meaning of that phenomenon.

Causality Another quality of models that makes them particularly suitable for managing
meaning is their ability to represent causal relationships. In this sense, causal models can
be seen as structured, actionable information that encodes procedural processes (Belenchia,
2021). The causality of such models allows us to deal with the causes and consequences that
link the variables describing a task-environment and the actions that can be performed, en-
abling action-oriented behavior6. We identify two main parts of a causal model: a left-hand
side (LHS), representing the cause, and a right-hand side (RHS), representing the effect. The
LHS is the ‘input’ of themodel, and represents a pre-conditional pattern composed of variables,
values and so on. The RHS then represents the post-conditions of the LHS pattern. When ap-
plying forward-chaining, whenever the LHS pattern is observed, a prediction based on the
RHS is generated by a process of deduction. The converse happens in backward-chaining:
when a RHS pattern representing a goal is observed, a sub-goal based on the LHS is gener-
ated, meaning that, in order to reach the goal specified in the RHS, the LHS must be reached.
Sub-goals can be further backward-chained until a command for some actuator is produced,
and in this way models can be used to produce effective plans to achieve goals. If the RHS is
not a goal, backward-chaining can be used to derive potential causes for the observed state.
Further information can be incorporated into the model; for example, we could include the
accuracy of the model, that is, the number of successful applications of the model (how many
times the model was correct out of all the times it was applied). In order to make it possible to
navigate the models in these two directions, there must also be a set of (learnable) functions
that indicate how the transformation from LHS to RHS and vice versa actually occurs. Ulti-
mately, these functions will need to take into account the mechanisms that come into play in
the physical world (Thórisson and Talbot, 2018a; Thórisson and Talbot, 2018b).

Pseudo-axiomatic and resources The models should constitute a defeasible and revisable
knowledge base – in a word, pseudo-axiomatic. In the context of agents based on direct expe-
rience of their environment, such agents will not be able to experience every aspect of their
environment at the same time, but will have to accumulate experience over time. In this sense,
the knowledge acquired by the agent at any given moment in time twill necessarily be partial
and, most likely, incomplete. An agent who assumes its knowledge to be axiomatic will have
no reason to update it. Similarly, if every aspect of knowledge is questioned, as being consid-
ered “flawed”, no action will ever be performed. For this reason, it is necessary for the models
that constitute knowledge to be accompanied by information regarding their usefulness in
guiding the agent’s actions: in this way, even if incomplete, the most useful models (which
are assumed to correctly capture at least some aspects of the environment) will be retained
until they are updated or discarded when incorrect. Similar discussion can be made for the
inclusion of information on time, energy, and resource consumption in general. Models that
abstract from resource and time consumption do not give certainty about, for example, the
time required for their execution, and could lead the agent using them to generate impractical
solutions to the problems they must solve (such as, for example, using an infinite amount of
time or memory).

6Recall the crucial difference between causation and correlation set forth in the previous chapter, which re-
quires causation as a fundamental element to perform task
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Compositionality Finally, we consider compositionality as one of themost important qual-
ities that models for that support meaning must possess. Compositionality of models is a very
important feature, as it allows them to represent and handle compound phenomena. Causal
models, which are composed of an LHS and an RHS, can be put together in hierarchical fashion
to specify pre or post conditions for the execution of other models. For example, a modelMj

might be featured in the LHS of another modelMi, specifying in that case that upon success-
ful execution of modelMj modelMi will be observed, predicting that occurrence. Viceversa,
if Mj is featured on the RHS of Mi it specifies that, upon successful execution of model Mi

model Mj will be successfully observed. Models can be built in conjunctive form, in which
case they constitute a causal chain whose effect is the result of multiple, temporally corre-
lated, required transformations. Models built in disjunctive form, on the other hand, specify
a causal chain whose effect is determined by the occurrence of the most likely pre-condition
(Nivel, Thórisson, B. Steunebrink, and Schmidhuber, 2015). The simplest terms featured as
inputs in the LHS or RHS of a model are called facts, and the observed event, a likelihood
value indicating the reliability of the observation and a time interval specifying the period
within which the fact is believed to be true. Therefore facts are grounded in time and valid
only within a certain time period. The execution of models is models is time-dependant and
the truth of facts is valid only with respect to the specified likelihood value and within a
specific time-interval (Nivel, Thórisson, B. Steunebrink, Dindo, et al., 2014).

Bi-directional compositional causal models are the fundamental unit (‘bit’) of knowledge
in the kind of intelligent systems we are studying.

3.5 Causality & causal chains

In Section 2.2we introduced Judea Pearl’s approach to causality and the need tomanage causal
relationships in order to perform tasks effectively. In the previous section we also introduced
the notions of bidirectionality and compositionality, pointing to them as important qualities
that models should possess to support meaning handling. It is now useful for us to delve
into how causal relationships create links between multiple models until they form outright
chains. Such chains make it possible to reconstruct relationships between even seemingly
disconnectedmodels through the identification of the intermediate models that connect them.
This ability to link different models together also underlies the concept of meaning, since
meaning resides in implications and relationships between phenomena.
Causal models are modular, in the sense that a modelMa can be used as precondition for

a model Mb and vice-versa. Putting multiple models together in this way forms a chain in
which everymodel except the first and last is present at the same time as LHS and RHS exactly
once.

Definition 3.5.1 (Causal chain). Given a set of causal modelsM = fm1; : : : ;mng, we de-
note CM the causal chain over m1; : : : ;mn and ci its elements, where c is a bi-directional
relationship linking two causal models, respectively a left-hand term LT and a right-hand
term RT , and i represents the position of c in the chain. The right-hand term of ci is also the
left-hand term of ci+1. The only elements that appear once in CM , as LT and RT , respec-
tively, are called head and tail.

A chain between models Ma and Mb appears of the form Ma ! m ! Mb, where the
effect of Ma on Mb comes from the influence of the intermediate model m. This type of
relationship naturally occurs quite often between phenomena. For example, we can represent
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the relationship between depressing a car’s brake pedal and the resulting reduction in car
speed as

push brake pedal! activate braking mechanism! reduce car speed

The intermediate modelm separates the modelsMa andMb, acting as a ‘mediator’; without
m, Ma and Mb would be independent of each other. Judea Pearl captured this idea in its
d-separation criterion (Pearl, 1988).

Definition 3.5.2 (d-Separation (Pearl, 2009, pp. 16-17)). A path p is said to be d-separated
(or blocked) by a set of nodes Z if and only if at least one of the following is true:

1. p contains a chain i! m! j or a fork i m! j andm 2 Z ;

2. p contains a collider i! m j such thatm =2 Z and neither does any of his descen-
dants.

A set of nodes Z d-separates X from Y if and only if Z blocks all paths from any node in X
to any node in Y .

The d-separation criterion applied to any two disjoint sets of variables X and Y allows
the identification of another disjoint set of variables Z which makes X and Y independent
of each other when Z is controlled for. For the application of the d-Separation criterion the
variables need to be represented as nodes of a directed acyclic graph (DAG) whose arrows,
correctly represent their causal relationships(Pearl, 2009, p. 16).

As we have seen, chaining is one of three situations where the d-separation criterion can be
applied. A fork is a situation in which two models share a common causeMa  m ! Mb

where m is also called a ‘confounder’ of Ma and Mb, because Ma and Mb would appear
correlated even though there’s no causal relationship between the two. An example of a fork
is observed when, during a snowfall, people turn on the heating. It would look like snow
causes the heating to be turned on, or the converse, but, in fact, it is the low temperatures
that cause both events

snow low temperatures! heating ON

Finally, a collider is a relationship of the form Ma ! m  Mb where m is influenced by
two different causes Ma and Mb. When we observe m alone, we cannot be sure that it was
Ma rather thanMb that caused it. An example of a collider is a videogame where the GAME
OVER screen appears whenever the player touches an enemy or when the player’s time to
complete the level runs out

touching enemy! GAME OVER time out

The concept of d-separation comes in handy when, in the meaning-generation phase, hy-
potheses are to be generated about the possible causes or consequences of a model. Consid-
ering situations in which a confounder or collider might be present particularly supports the
backward process of hypothesis-making by allowing the process to correctly recreate causal
chains culminating in the goals.

3.6 Learning by reasoning

Most of machine learning study nowadays is focused on algorithm-based learning. Amachine
learning system is usually described as a “learning algorithm” taking raw data and background
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knowledge as input and producing some output (Wang, 2009). By definition, a (deterministic)
“algorithm” is a well-defined, step-by-step procedure, consisting in an unambiguous set of
instructions that can be executed by a computer or followed by a human to achieve a desired
outcome. For the same input, the algorithm always produces the same output using a con-
stant amount of computational resources, namely time and space. Therefore, by repeatedly
providing the same input, a typical machine learning system will use the same amount of
resources to produce identical output every time. However, not all machine learning systems
fit the above description. That is the case for the Non-Axiomatic Reasoning System (NARS)
and the Autocatalytic Endogenous Reflective Architecture (AERA), two AGI-aspiring systems
that rely on reasoning and experience, as well as user-provided knowledge, to answer ques-
tions and carry out tasks. This basically means that these systems continuously collect new
knowledge and provide answers based on the available knowledge and resources. AERA and
NARS systems based on reasoning have already achieved promising results (see Section ). Ab-
stracting from the architectural design principles and implementation aspects behind these
systems, which are beyond the scope of this paper, we introduce in this subsection the topic
of learning by reasoning.
Reasoning is the establishment of pseudo-axioms for the world and the process of apply-

ing logic to information according to these rules7. Reasoning can be effectively used as a
method for learning when applied to acquired information. Deduction, induction and abduc-
tion can be used to simulate, generalize and infer new information from acquired information,
respectively. Reasoning is most effectively used in combination with experience-based learn-
ing: an intelligent agent making use of some reasoning is capable of working in situations
where nothing is certain (only some things are more probable than others) with uncertain
assumptions (Thórisson). In this kind of situation, agents equipped with reasoning can pro-
duce hypothesis to explain the workings of the surrounding environment and, through direct
experience, select and retain only those that are most useful (this process is also called am-
pliative reasoning). Logic is also an most effective way to compress information. Because
of the high ratio of possible states in the physical world to the storage capacity of any type
of mind/memory, it is not conceivable that understanding (i.e. useful, reliable knowledge)
of a large amount of phenomena in the physical world can be achieved without the use of
reasoning (Thórisson).
We report below themain types of implemented inference used inNARS andAERA (Thóris-

son, 2022e).

Deduction Results of two statements that logically are necessarily true. For example:

Premise 1: all beans from bag A are white beans. (3.1)
Premise 2: B are beans from bag A. (3.2)

Result: B are white beans. (3.3)

Induction Generalization from observation. Induced knowledge can always be refuted by
new evidence. For example:

Premise 1: B are beans from bag A. (3.4)
Premise 2: B are white beans. (3.5)

Result: all beans from bag A are white beans. (3.6)
7We resort to the use of pseudo-axioms because our world is non-axiomatic, or at least that is what we are

forced to assume until we discover the ultimate laws that describe the workings of the universe
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Abduction Reasoning from conclusions to (likely) causes. For example:

Premise 1: B are white beans. (3.7)
Premise 2: all beans from bag A are white beans. (3.8)

Result: B are beans from bag A. (3.9)

Analogy The ability to find similarities between even very different phenomena.

With reference to the models and causal diagrams previously introduced and duly extended
(Section 2.4) and characterized (Section 3.4), we can define reasoning over these models and
diagrams. As defined in Section 2.2.3, a causal model is a representation of a phenomenon by
means of a set of variables and their relationships with variables external to the phenomenon.
The relationships between variables are understood as cause-and-effect relationships, where
the value of one or more variables, the premises, affect in a more or less direct way that of an-
other, the conclusion. This view of cause-and-effect relationships between variables thus lends
itself to analysis by logical reasoning. In particular, causal diagrams associated with models
can be read deductively (forward chaining) and abductively (backward chaining). Moreover,
since models are hierarchically composable (see Section 3.4), a model can be included in the
causal diagram of a “higher-level” model. In this sense, we can apply the reasoning not only
to variables but also to the models themselves. A model Ma could be linked to a model Mb

through a series of causal equations and, thus,Ma is a cause of change forMb.
Other types of reasoning can be applied to causal diagrams. For example, induction and

analogy can be used effectively in hypothesis generation processes. For example, the applica-
tion of analogy on a set of modelsM = m0;m1; � � � ;mn could identify a subset S of models
similar to each other. If another model nj shared the same relationship with multiple mod-
els of S, inductive reasoning could generate the hypothesis that the same relationships are
present between nj and the other models si 2 S.

With particular reference to the extension of diagrams presented in Section 2.4, reasoning
can also effectively support task achievement. Indeed, once the goal states of a given task
have been identified, through abductive reasoning it is possible to trace the goal variables
back to the variables that can be manipulated by the agent at a given time, and thus figure out
how to control the goal variables and make them assume the values required to successfully
complete the task.

3.7 Relevance

The practical essence of our theory requires us to take into account the differences present in
the models that constitute the knowledge base, since some models will be more useful than
others to an agent in carrying out tasks. In fact, models that describe the performance of
a country’s economy are unlikely to come in handy in the task of baking a chocolate cake.
For this reason, the reconstruction of implications should not treat pieces of knowledge, i.e.,
models, indiscriminately, but prioritize those most likely to lead to the desired outcomes.
Recall that meaning is a tool to support the achievement of goals, so any ‘utility’ metric will
necessarily have to reference goals of some kind. We call this feature of models as relevance.
Relevance is the metric used to filter knowledge in order to guide the meaning generation
process toward achieving goal states by narrowing the scope of the search.
As we have already mentioned, relevance possesses certain characteristics such as situ-

ation dependence and the need to connect with goals. The goals we are interested in for
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the purpose of calculating relevance are, once again, explicit goals. Implicit goals, having
no explicit representation within the agent’s knowledge, cannot be the subject of the mean-
ing generation process. We also distinguished active and inactive goals, say that the former
are currently pursued by the system and the latter are not. But when does a goal becomes
active or inactive? This strictly depends on the system’s implementation of the whole goal
mechanism. In a sense, goals that are to be pursued are the most relevant to the system’s top
drives – the set of directives by the system’s designer defining the purpose of the system and
that change only when the system is re-purposed. Another feature of relevance is temporal
grounding. A set of models that are relevant at a given time are not guaranteed to maintain
the same relevance over time, especially over long periods of time. Models that often prove
useful are retained, otherwise they are deleted to free up memory space.

3.7.1 Model relevance

A proper definition of relevance comes from Nivel, Thórisson, B. Steunebrink, and Schmidhu-
ber (2015). In this work the authors present a value-driven computational model of anytime
bounded rationality robust to variations of both resources and knowledge that leverages con-
tinually learned knowledge to anticipate, revise and maintain concurrent courses of action
spanning over arbitrary time scales for execution anytime necessary. This model of any-
time bounded rationality adopts an architecture for the execution of programs assigned to
jobs. A system’s experience constitutes defeasible knowledge, and is represented using non-
axiomatic temporal term logic, where the truth value of knowledge is neither eternal nor
absolute. A term exposes three components: (a) arbitrary data, (b) a time interval of the form
[early deadline; late deadline] expressed in microseconds, world time, and (c) a likelihood in
[0; 1], the degree of data ascertainment.
In order to address relevance, Nivel, Thórisson, B. Steunebrink, and Schmidhuber (2015)

focus on the behaviour of the system tending to an input x, which can be a sensory/reflective
input, an interference or a drive. The value of tending to x at time t is made dependent on
both its urgency (for situational awareness) and likelihood:

Urgency(x; t) = 1�
THZ(x; t)

Maxi(THZ(xi; t)) + U

TrendingV alue(x; t) = Urgency(x; t)� Likelihood(x; t)

where THZ =Max(LD(x)� t; 0) stands for “time horizon”, LD “late deadline”, xi being all
the inputs in the system and U a system parameter meant to keep urgencies positive. Because
a goal can be achieved by means other than expending energy to derive subgoals, the authors
define the value of pursuing a goal as decreasing as the probability of its achievement (i.e.,
the most likely prediction of its goal state) increases:

P (x; t) = Maxi(Likelihood(pi; t))

Effort(x; t) =

(
Likelihood(x; t) Likelihood(x; t) � P (x; t)

1� P (x; t) otherwise

TendingV alue(x; t) = Urgency(x; t)� Effort(x; t)

where pi are the predictions of x’s target state. The global relevance of a model m is then
defined as the normalized maximum of the tending values of all its inferences xi(T;m) of
type T (predictions or goals) that are still ‘alive’ (meaning that they have not been removed
from memory) at time t:
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UR(m;T; t) = Maxi(TendingV alue(xi(T;m); t))

Relevance(m;T; t) =
UR(m;T; t)

Maxi(UR(mi; T; t))

wheremi are the models in the system. If none of the models of the xi(T;m) are alive, then
m’s relevance is computed as

Relevance(m;T; t) =
Mini(UR(mi; T; t))

Maxi(UR(mi; T; t))

3.7.2 Model reliability

Models are variable defeasible knowledge, therefore their construction, deletion, and revision
are triggered by experimental evidences of their predictive performance. An inference results
from the processing of evidences by chains of models and is defeated or confirmed upon
further (counter-)evidences. Its likelihood is continually revised depending on the context
and reliability of said models and, notably, decreases with the length of the chains (Nivel,
Thórisson, B. Steunebrink, and Schmidhuber, 2015):

Reliability(m; t) =
e+(m; t)

e(m; t) + 1

where e+(m; t) is the number of successful predictions produced until any time t by a model
m, and e(m; t) is the total number of predictions. The likelihood, at any time t, of an inference
y produced by a modelm from an input x is then defined as:

Likelihood(y; t) = Likelihood(x; t)�Reliability(m; t)
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CHAPTER 4

Autonomous Meaning Generation

This chapter proposes a theory of pragmatic meaning generation in the context of artificial
intelligence systems. The main contributions towards this include:

• Proposing a characterization of goals, an essential element of the generation of mean-
ing;

• Presenting a definition of meaning based on the formalization of previously introduced
concepts;

• Review and new formulation of the concept of implication, definition of a relevance
metric on implications, and discussion of reliability on implications;

• Formalization of a meaning generation process detailed enough to be implemented in
an artificial intelligence system;

• Review of the formulas introduced in this chapter in light of the LTE assumption.

At the end of this chapter we will also discuss the relationship between meaning and under-
standing and the qualities of intelligent controllers that enable them to handle meaning in
varying degrees.

4.1 A characterization of goals

We previously introduced goals as an extension to causal diagrams and, then, as a charac-
teristic element of meaning. In this subsection, we further explore the concept of goals and
propose a classification system for the different types of goals.
A goal is a desirable and possibly partial state that an agent should achieve. Goals are

central to the definition of a problem: a problem is in fact defined as a goal to which are
associated constraints arising from the particular task-environment in which the problem is
contextualized; the task-environment assumes particular ranges of values for variables, as
well as possible element groupings (Thórisson, 2022c). This classification system clarifies the
forms in which goals can be identified and how they affect the meaning generation process.
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Let us first introduce the distinction between implicit and explicit goals, taking as an
example Braitenberg’s vehicles. A Braitenberg vehicle is an example of a reactive agent that
can autonomously move around based on sensory inputs. It has primitive sensors to perceive
the surrounding environment directly connected to its motors, each of which drives a wheel.
In its simplest configuration a perception from one of its sensors immediately produces a cor-
responding wheel movement, as shown in Figure 4.1. In its basic configurations, the behavior
apparently exhibited by this reactive agent is either actively chasing that which its sensors
sense (Figure 4.1a), or avoiding it (Figure 4.1b). In other words, the agent could be said to
have the “goal” of chasing/avoiding something. In this case, our system is actually designed
to chase some goal, but it does not have a data structure that represents the goal explicitly.
In order for an AI system to examine and reflect on its goals, for, e.g., generating meaning, it
must have a representation of its goals in some sense “explicit”, i.e., a discrete representation
that can be manipulated, compressed / decompressed, and related to other data structures for
various purposes (Thórisson). Explicit goals assume that the system’s control mechanisms
can operate on the system’s internal knowledge, analyze patterns, and use these to generate
new control mechanisms and goals. For this reason, in order to define the concept of implica-
tion (a fundamental aspect of meaning, as argued before) as a process that relates perceptions
to goals, we must specify that these goals must have a clear representation for the AI system,
that is, the systemmust be aware of them in some clear way. Let us therefore denote the goals
that belong to this type as “explicit” goals, and the others as “implicit” goals.
Different, however, is the differentiation between active and inactive goals. An active goal

is to be understood as one of the goals that the system is currently pursuing. Take as an
example an autonomous agent powered by an internal battery. Such an agent might have the
goal of maintaining the charge level of its internal battery above a set threshold (similar to
what is usually suggested as to date is suggested to be done with lithium batteries to prolong
their useful life). Such an agent would then have to resort, periodically, to a power source to
recharge itself. If the agent were aware of appropriate “charging stations” (similar to those for
today’s electric cars) it could generate the intermediate goal of “finding a charging station”.
However, the latter goal might be activated only when certain conditions are met. Similarly,
a human being who is not hungry will not search for food. Whether or not a goal is active is
thus another relevant factor in computing meaning. If a goal is inactive, the events that relate
back to that goal may not be significant in the immediate term (if I am not hungry, I am not
going to eat that apple I just saw in my fridge, but in a few hours I might give it a thought).
Finally, let us distinguish between positive and negative goals. A positive goal (see Goal)

is a desirable, possibly partial, state that the agent should reach. Conversely, a negative
goal (see Failure), is an undesirable, possibly partial, state that the agent should avoid. To
successfully carry out a task, positive goals must be met while, at the same time, avoiding
negative goals: any process for meaning generation should produce results that satisfy this
condition. In this sense, goals are attractors in the state space of the agent’s knowledge1,
in that they catalyze the agent’s relevant knowledge in such a way as to enable it to reach or
avoid certain states. If the agent knows how to achieve a goal, it means that it can make a
plan for getting there.
Goals differ from general laws of the universe. Goals are localized, while universal laws

are not. Goals exist under the constraints of universal laws, but extend behavior within what
these laws dictate. An entity like a rock has no local rules. An active goal further constrains
the behavior of a controller; the form that these extended constraints take are determined by
the controller’s knowledge. In a world of physics, only global rules exist that apply equally

1K. R. Thórisson, personal communication
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(a) Braitenberg vehicle exam-
ple control scheme: “love”.

(b) Braitenberg vehicle exam-
ple control scheme: “hate”.

(c) Braitenberg vehicle exam-
ple control scheme: “curious”.

Figure 4.1: An examplewhere (a) the vehicle follows (and ultimately crashes into) what its sen-
sors perceive, (b) the vehicle avoids what its sensors perceive, and (c) the vehicle approaches
what its perceived by its sensors without crashing into it (thinner wires means weaker sig-
nals). (From K. R. Thórisson’s Advanced Topics in A.I. course at Reykjavik University; reproduced
by permission.)

to everything. A rock does not have a goal to roll down a hill, because it does not have local
rules in the form of goals that determine its “nature” at a particular place and time.2

According to this view on goals, we might even go as far as to say that the most primitive
function of meaning is the computation of whether something will have a positive or negative
impact on one’s active goals.

4.2 On defining meaning

In our pursuit of a more robust understanding of the concept of meaning, we intend to give a
more rigorous description of the concept of meaning by building on the intuition set forth in
the previous section. We contend that meaning is tied to and grounded in a physical world
denoted asW . This world is described by a complex interplay of variables, where each vari-
able’s domain is constrained by the laws established by the world itself. The values of these
variables change over time according to a set of dynamics functions associated with them.

Definition 4.2.1 (World (Thórisson, Bieger, Thorarensen, et al., 2016)). A world W is an
interactive system consisting of a set of variables V , dynamics functions F , an initial state
S0, domainsD of possible clusters of particular constraints on their values, and a set of rela-
tions between the variables R: W = hV; F; S0; D;Ri. The variables V = fv1; v2; :::; vkV kg
represent anything that may change or hold a particular value in the world. The dynamics
functions act as the laws of nature in the world and as a whole can be seen as an automati-
cally executed function that periodically or continually evolves the world’s current state into
the next: St+� = F (St). It is useful to the decompose the dynamics into a set of transition
functions: F = ff1; f2; :::; fng where fi : S� ! S� and S� is a partial state. The domains
dv 2 D specify which values each variable v can take, and for physical domains these are
usually subsets of real numbers. The relations are Boolean functions over variables that hold
true in any state the world will ever find itself in. If the world is a closed system with no out-

2K. R. Thórisson, personal communication
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side interference, the domains and relations are implicitly fully determined by the dynamics
functions and the initial state. In an open system where changes can be caused externally,
instead, the explicit definition of domains and invariant relations can restrict the range of
possible interactions.

A world is, by definition, a highly complex and diffuse system. Typically, any situated
system experiences only certain parts of the world at any given time. Therefore, we narrow
our scope of interest from the world to a subset of it, the environment. A subset of the variables
ofW is called environment E, and represents a limited view of the world.

Definition 4.2.2 (Environment (Thórisson, 2022c; Thórisson, Bieger, Thorarensen, et al.,
2016)). An environment is a view of a world. An environment E of a world W is a pair
hV; F i, where V 2 VW is a subset of the variables of W and F 2 FW is the subset of
dynamics functions of W describing how the environment’s current state evolves into the
next. The body of an agent is considered to be part of the environment. The constraints
placed byW are valid in every environment ofW .

The same environment observed at different points in time may appear slightly different
based on the values assumed by its state variables. Thus, an environment with a specific
instantiation of its variables is here called context. Equivalently, a context is an environment
observed at a specific point in time.

Definition 4.2.3 (Context, Perceived Context). Given an environmentE and a set of vari-
ables v1; � � � ; vn representing the state of E, we define the context of the environment at a
given point in timeCEt as the elements making up the environment (variables and dynam-
ics functions) plus a state S which defines the exact values of every variable associated to E
at time t. An agent situated in an instantiated task-environment will typically not be able
to perceive the entire context. Therefore, we refer to the perceived context as the set of
observable variables of the context (the set of variables perceived by the agent).

This set of definitions now allows us to introduce with greater clarity and precision the con-
cept of meaning. Meaning is not a concept that exists in itself, but is always referred to some
datum3 d perceived at time t by some entity – which we call agent – A. An agent A com-
putes the meaning of a datum d perceived at time t in a context C by relating d to its own
knowledge K and identifying relationships with its own explicit and possibly active goals
G = fg1; g2; :::; gng. The process of linking d to G involves the use of some form of rea-
soning over K to generate the relationships linking d to G. Agent-environment interactions
provide the agent with a way to test hypotheses and predictions and to refine its models
through experience. The information collected by the agent at any point in time is possibly
partial and subject to noise, necessitating the use of pseudo-axiomatic logic that produces
defeasible and revisable knowledge.

Definition 4.2.4 (Meaning). Meaning is the whole set of actionable information en-
abling an agent situated in a context to go toward a goal attractor. Meaning is associated
with a datum (a phenomenon, event, etc.). The set of associations that, at a given time and in
a given context, reconnect the datum to one of the agent’s explicit goals through identifiable
links in the agent’s knowledge places the agent in a position to successfully reach and achieve
its goal. We therefore talk about the meaning of datum d perceived at time t in a context C
by an agent A with knowledge K and a set of explicit goals G = fg1; g2; :::; gng. Meaning

3By "datum" we mean an event, perception possibly subject to noise, or any pattern recalled for some reason,
something that can be represented by the agent’s mind (Thórisson, Kremelberg, et al., 2016)
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is computed with the help of some form of reasoning over K to generate the relationships
linking d to G. The knowledge of the agent is ultimately linked to a subset of the actions the
agent can perform to act on its surroundings.

The first important consideration that emerges from this definition is that meaning is a
special kind of actionable information (i.e., knowledge). Not all knowledge represents, per
se, meaning. Knowledge organized in such a way as to link a datum to a goal through the
execution of actions that influence the surrounding environment. The kind of knowledge that
enables this is causal knowledge. Since not all types of knowledge constitute meaning, there
must be a way of generating meaning. It is precisely this process of meaning generation that
we are going to explore in the following sections, trying to provide as coherent and detailed an
explanation of this process as possible so that it can be implemented in an intelligent system
in the future.

A second element to focus on is the reference to a specific type of goal – explicit goals.
Explicit goals, as already expressed in Section 4.1, imply the system’s ability to manipulate
internal knowledge and reason about what are the goals it is expected to achieve. Implicit
goals cannot, by definition, be linked back to anything, as they lack a representation in the
controller’s mind.
Finally, since the central pivot of meaning generation is the agent, the set of characteristics

that agent possesses influence its ability to handle meaning. We will therefore delve deeper
into the relationship between an agent’s qualities and the degree of meaning in Section 4.6.

Bit of meaning The tiniest “bit” of meaning might be just a single value associated to an
action that directly controls a single goal variable. The meaning of the action is computed
in relation to the goal variable that does or does not acquire a ‘goal’ value in response to the
agent’s action.

4.3 Implication

We defined meaning as the entirety of information that defines the state of an implemented
controller going towards a goal attractor. We also argued that meaning has to be generated
through a process by some entity. While meaning is a set of static information, in that it
requires a process that appropriately interprets that information and translates it into actions,
meaning generation is a dynamic process. We present in this section the fundamental building
blocks of a meaning generation process – implications.
Sincemeaning is a series of connections within the knowledge base available to a controller,

the meaning generation process must first proceed to create these connections. Taking up the
concept of a causal chain already introduced in Section 3.5 and with reference to the previous
formulation provided by Thórisson, Kremelberg, et al. (2016), we then define the concept of
implication.

Definition 4.3.1 (Implication). Given Ct a context at a specific moment in time, the impli-
cations I of a perceived datum d computed by an agentA are the elements of a set of reasoning
chains, namely deductions, inductions, abductions, and analogiesRt = Det[Int[Abt[Ant,
over the knowledgeKt ofA and the PCt perceived context by the agent. A single implication
is a chain of causal relations cr 2 Kt linked together by deduction, induction, and analogy
starting from dt and ending with an explicit goal gi 2 Gt, and by abduction starting from an
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explicit goal gi and ending with dt, represented

Rt(dt; PCt;KA; GA) = Det(dt; PCt;KA; GA) [ Int(dt; PCt;KA; GA)

[ Abt(dt; PCt;KA; GA) [ Ant(dt; PCt;KA; GA)

It(dt; Ct; A(Kt; Gt)) = Rt(dt; PCt;KA; GA)

It might also be possible for the set of all implications to be emptyR = ;, if no implication can
be derived from a given combination of input values. The datum can therefore be considered
“meaningless”. An implication is a triple hHead;Body; Taili, where Head is the origin of
the implication, i.e., the model of the datum, Tail is a goal state, and Body is the ordered set
of causal relationships forming a causal chain going from Head to Tail.

According to this definition, starting from the agent’s set of models describing the datum
and the agent’s perception of the datum and context, deduction, induction, and analogy are
concerned with producing direct implications toward the agent’s explicit goals, while abduc-
tion acts from those goals and tries to trace back to the datum. These twomovements of agent
knowledge research, forward and backward, continue until a complete causal chain is recon-
structed, possibly resulting from the union of chains created in forward and backward fashion
that meet halfway. In other words, given a large set of variables and dynamics functions de-
fined on a subset of them, the causal diagrams linking these variables to the agent’s goals, if
any, are generated. Figure 4.2 provides an insight into the structure of the implications.
Given a modelm, the process of implication generation will posem as the LHS of a causal

relationship and will search, through a patternmatchingmechanism, among the other models
in the agent’s knowledge base for other models that are influenced (even if only presumably,
through hypothesis generation and application of analogy) bym, placing them as candidates
for the RHS of the causal relationship and continuing the chain of implications that has as
its goal reaching a goal state. “Reaching a goal state” means that the last model in the causal
chain, i.e., the “tail” of the implication, directly controls one ormore variables that characterize
the goal state, allowing the agent, through implementation of the actions associated with the
model, to move closer toward the goal state. This process of generating implications also
occurs through the production of predictions and hypotheses by application of reasoning
to the knowledge to which the agent has access. For example, imagine that an agent possesses
a model that predicts the upward movement of one of its mechanical arms. Such a model
might indicate that given a generic (x; y; z) position of the arm in space and applying the
move_arm_up action the position of the arm in spacewill become (x; y; z0), where z0 = z+i.
Knowing this, the agent is able to predict, by inference, that by applying themove_arm_up
action several times, it will be able to raise the arm high enough to pick up an object from a
shelf.
When an implications ends in a negative goal is called a negative implication. In addition

to what has already been said about implications, this type of implication comes in the form
of actionable information that makes it possible to avoid failure states.

Definition 4.3.2 (Negative Implication). An implication that ends in a negative goal is
called a negative implication. In contrast to normal implications, a negative implication
puts the system that generated it in a position to avoid failure by knowing what actions
(identified by the implication generation process or by analogy) can cause that goal state
to be reached.
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Figure 4.2: Visualization of the meaning generation process. Connections are identified be-
tween the datum and goals through the application of reasoning to the agent’s knowledge

4.3.1 Partial implication

Given the previous definition of implication, we note immediately that the meaning gener-
ation process may not produce any implications at all. This could be due, for example, to
particular operational constraints on the agent, such as a very small time window for mean-
ing computation. However, in light of the previously introduced assumption about an agent’s
operational conditions, i.e., that it is assumed to be constrained to work with insufficient re-
sources and knowledge (see AIKR in Section 2.4), it is necessary to make our definition of
implications more flexible. If an agent performs its computation in a limited time frame and
fails to produce implications due to lack of resources, instead of returning an empty set of
implications and throwing away the work done, we would prefer instead that it returns the
partial result of its computation so that it can resume its work at a later time. Given this
assumption and our definition of implication, let us go on to define the notion of partial im-
plication. A partial implication is a chain of causal relationships that originates in the datum
and ends in a knowledge element other than a goal. In any relevant case-scenario, the pro-
duction of implications is subject to limitations in resources of energy, space and time (LEST),
so it is plausible that any process for generating implications may fail to return any results.
The concept of “partial implication” supports an anytime process whose execution that can
be paused (returning the results of its partial computation) and later resumed (starting from
a previously generated set of partial implications).

Definition 4.3.3 (Partial implications). Given Ct a context at a specific moment in time,
the partial implications PIt of a perceived datum dt computed by an agentA are the elements
of a set of reasoning chains, namely deductions, inductions, abductions, and analogies Rt =
Det[Int[Abt[Ant, over the knowledgeKt ofA and the Pt perceived context by the agent.
A single partial implication is defined as an implication originating either from dt and ending
with any knowledge element other than one of the agent’s explicit goals gi 2 Gt, or from an
explicit goal gi and ending with any knowledge element other than dt. A partial implication
is a triple hHead;Body; Taili, whereHead is the origin of the partial implication, i.e., either
the datum or a goal, Tail is a piece of the agent’s knowledge k 2 K other than a goal, and
Body is the ordered set of causal relationships forming a causal chain going from Head to
Tail.

Partial implications can thus be either deductive, inductive and analogy implications that start
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from a datum and tend toward a goal in a forwardmanner, or abductive implications that orig-
inate from a goal and tend toward the datum in a backward manner. A partial implication can
be taken up and extended at a later time just by starting from its tail and progressing toward
the target, keeping the head and body in memory to eventually recreate the full implication.
This then leads us to supplement the previous definition of implication with the possibility
of developing computation from a set of partial implications.

Definition 4.3.4 (Implication (supplement)). The function computing implications can
accept as input a set previously computed partial implicationsPI . Coupled with a context at a
specific moment in time Ct and the knowledgeK possessed by the agent A, the computation
resumes from the Tails of each partial implication as they were the datum of a process
generating implications.

Rt(PI� ; PCt;KA; GA) = Det(PI� ; PCt;KA; GA) [ Int(PI� ; PCt;KA; GA)

[ Abt(PI� ; PCt;KA; GA) [ Ant(PI� ; PCt;KA; GA)

It(PI� ; Ct; A(Kt; Gt)) = Rt(PI� ; PCt;KA; GA)

where � < t

There is another fundamental aspect of meaning generation that should be included in the
definition of a meaning generation process that is intended to be used in practice. So far,
our definition of implication generation is comparable to the simple application of breadth-
first search (BFS) to a knowledge graph. However, the number of possible causal diagrams
that can be defined on a given knowledge base can grow exponentially and quickly become
computationally intractable. Let us take a simplified model of a country’s economy as an
example. The three main variables we consider are employment rate, inflation, and interest
rate. Each of these variables influences others: for example, the employment rate could in-
crease the production of goods and services, but also lead to higher wage demands; likewise,
higher inflation could increase the cost of living and reduce people’s real income. Each of
these variables influences, in turn, a set of other variables, greatly expanding the number of
aspects to be taken into account in just a few steps. Figuring out, in such a model, how to
act on a specific factor thus becomes a nontrivial task. The treatment of the problem must
therefore make use of some informed search technique or similar methodology to reduce the
number of states to be evaluated. In our case, we resort to the concept of relevance.

4.3.2 Relevant implications

In the context of the paper in which it is defined, relevance is used as a metric to assign the
model to a chaining job that will eventually execute it according to a scheduling algorithm.
Instead, the importance of the definition of relevance of a model for this work is related to
the possibility of extending that notion of relevance and making it applicable to implications,
since the process of making implications must proceed guided by relevance. In the process of
meaning generation, the search for connections (known or conjectured) between models is
aimed at achieving goal states. As we mentioned in Section 4.3, a simple BFS on the graph
defined on the agent’s knowledge is not a viable approach in real-case scenarios. Proceeding
by choosing relevant models each time allows us to reduce the scope of the search by targeting
the paths that seem most promising. In constructing causal chains by application of non-
axiomatic reasoning, the objective is to reconstruct a chain of models such that, knowing
how to control an initial model, it is possible to influence the variables related to a goal state.
Each time an intermediate model (i.e., one that is neither at the beginning nor at the end)
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is added to this chain, this new model is chosen from the set of models M causally related
to the previous tail of the partial implication, sorting these models using a metric based on
relevance computed in the current situation. Relevance is an anytime algorithm4 executed on
the fly to figure out what is relevant at any given moment in a given time frame.

Definition 4.3.5 (Relevance in implication-making). Given the tail of a partial implica-
tion TailPI and a set of candidate modelsM causally related to TailPI , the new tail of the
partial implication Tail0PI will be the model mi 2 M that achieves the highest relevance
score calculated given the current context Ct and a time period � :

Tail0PI = Maxi(Rel(mi; T; � ))) for mi 2 CM(TailPI)

where CM(TailPI) is a function that returnsM , the set of causal models related to TailPI
and Rel is the function computing the relevance.

Repeated application of the relevance metric in the process of constructing an implication
allows us to discard paths that seem less useful for achieving the goal, effectively pruning the
search tree.
Having defined the role of relevance in the construction of an implication, we are now

interested in understanding the relevance of a complete implication so that we can compare
it with other implications. The way we define the relevance of an implication differs from the
previous definitions of relevance introduced. A complete implication may be treated just like
any other knowledge element, so considering an entire implication as a single, large model,
one could calculate its relevance with the formulas introduced in Section 3.7.1. However, two
implications connecting the same datum to the same goal, in the same situation, created at
the same time may share the same relevance value, since it is computed by abstracting from
the details of the composition of individual chains, in which case it would not be possible to
assess whether the two chains are actually equivalent or not. We therefore propose a more
capillary system to compute the relevance of an implication that gets into the merits of the
composition of individual causal chains. The relevance value of an implication should emerge
from the relevance of its constituents, specifically:

• The relevance of the models that constitute the implication: the more relevant the
models that make up an implication are, the more relevance the implication is expected
to have5. In general, the relevance of individual models should result in a value directly
proportional to the relevance of the implication;

• The type of goal to which the implication refers. The more important the goal where
the implication ends, the more relevant the implication should be, so the “importance”
of a goal should result in a value directly proportional to the relevance of the implica-
tion. Since it is theoretically possible to compose and organize goals hierarchically, it
would be appropriate to assign an importance value to each level of the hierarchy (if
such a hierarchy system were implemented), where goals higher in the hierarchy are
assumed to be important (they are more “general” than others in a sense) and thus take
on higher values. The value that matters for the purpose of estimating the relevance of
the implication is the value associated with the highest goal reached by the implication;
in the case where the implication ends in a subgoal, we proceed to identify the most

4An anytime algorithm is an algorithm that can return a valid results even if the computation is stopped before
its termination (albeit the quality of the results may vary).

5Note that the relevance of models changes over time, thus an implication’s relevance is not guaranteed to
remain unchanged over time
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important goal to which the subgoal is connected. Similarly, higher values could be as-
signed to ‘active’ goals and lower values to ‘inactive’ goals, as active goals could be said
to be more important than inactive goals, since they are the focus of the controller’s
attention6;

• The length of the implication: the longer an implication is, the more models it con-
tains, each of which may become less relevant over time. Therefore, one or more mod-
els are more likely to be discarded or become less relevant over time. Furthermore, in
longer implications the goal attainment mechanism is be more convoluted and time-
consuming to apply (running a large number of models requires more computational
resources than running a small set of models). The length of implication should trans-
late to a value that is inversely related to the relevance of the implication;

• The number of variables contained in the models that make up the implication. Since
models can also be organized in hierarchies, a single high-level model (which would
count as ‘one’ in determining the number of models present in the implication) might
contain a large number of variables and become heavier to execute, taking up more
computational resources to deal with (in terms of required resources). Therefore, the
number of variables contained in themodels should also translate into a factor inversely
proportional to the meaning of the implication.

Building on this discussion, we provide a definition of relevance of an implication.

Definition 4.3.6 (Relevance of an implication). Given an implication Im linking a da-
tum to an explicit goal, we define the relevance RI of the implication as its raw relevance
RR(Im) weighted by the hierarchical importance GIm of the goal it references, divided by
its length len(Im) times the total number of variables contained in the modelsmi 2MIm =
HeadIm [BodyIm [ TailIm:

len(Im) = jHeadImj+ jBodyImj+ jTailImj

num_var(m) = jVmj

RR(Im) =
X
i

Rel(mi; Ti; �i) for mi 2MIm

RI(Im) =
RR(Im) �GIm

len(Im) �
P

i num_var(mi)
for mi 2MIm

where Vm is the set of variables appearing in a model m and len(Im) is the number of
modelsm0; � � � ;mnmaking up a single implication. len(Im) can be calculated as len(Im) =
jBodyImj+ 2 if Head and Tail consist of simple (not compound) models.

4.3.3 Reliable implications

Similar to what has already been done for the concept of relevance, we could define the reli-
ability of an implication based on the reliability of individual models that constitute it. This
kind of work is less obvious and is more difficult, however, since we would have to take into
account the reliability of the individual models weighted by the length of the chain, but also
the reliability of the chain as a whole (i.e., treated as a single piece of knowledge with which

6Here attention is understood as amechanism formanaging the controller’s resources; attention decides which
aspects are worth focusing on and which are not. For a more precise definition, see Section 5.2.1
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to associate a reliability value), since it is more difficult to handle the wide variety of situa-
tions that might arise. Thus we defer a more in-depth discussion of the concept of reliable
implications to future work on the subject, and here we focus mainly on the conditions that
invalidate the chain.

In particular, we can assume that there is an reliability threshold, that is, a minimum
level of reliability deemed acceptable for the use of the model in question. However, this
value may not directly contribute to the elimination of the model in question, as the process
used for model elimination may be based on a more nuanced set of controls. That said, if
the reliability of any of the models in the chain falls below the reliability threshold, or if the
model is discarded, the chain as a whole is invalidated and can no longer be used to direct
the agent’s actions7. Nevertheless, such a chain need not be thrown away, as the “failing”
model breaks the implication into two partial implications, one originating from the datum
and the other from the goal, each of which, taken individually, is still valid. The two partial
chains thus created can then be fed back to the implication generation process to be extended.
Different, on the other hand, is the case of partial implications: this time the chain is “an-

chored” at its origin, i.e., itsHead, therefore, in the case of “failuremodels”, it will be necessary
to discard the whole part of the chain from the failing model (included) to its Tail.

4.4 Meaning Generation

After introducing a set of notions on which to base our theory, we proposed a definition of
meaning as the whole set of actionable information enabling an agent situated in a context to
go toward a goal attractor. This definition gives us an insight into how meaning is essentially
related to the execution of tasks, but it does not provide any practical tools for the agent to use
to facilitate its activity. Indeed, that role is fulfilled by a process that generates meaning and
appropriately places it in the agent’s knowledge context. Building on the notions introduced
in this chapter, we will provide in this section a list of design requirements for a meaning
generation process and a formulation of such a process.

4.4.1 Design requirements

Before we can introduce our process of meaning generation (from now on abbreviated PMG),
we must define the characteristics that such a process must possess. Many of these aspects
are consequences of what has already been expressed regarding the constituent elements of
meaning that have emerged from the intuitions and definitions set forth in the previous chap-
ters. However, the design requirements laid out in this section are not necessarily sufficient, as
many other assumptions could be added later, or even removed or revised from the following
list.

1. Context awareness: the PMG must take into account the context in which the agent
is placed, since any task assigned to the agent is inseparable from the environment,
which imposes a set of constraints on what is possible and not possible. The context
provides information about the current state;

2. Knowledge as a Single Source of Truth: the PMG must operate over the knowledge
of the agent, which, as we argued in Section 3.3, represents the single source of truth

7This behavior is entirely analogous to an audio jack, which, by breaking at some intermediate point, prevents
signal passage altogether
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of the agent, that is, it is the only organized and explicit information base to which the
agent is presumed to have access;

3. Generate actionable information: the result of the PMG must be a type of informa-
tion that can direct the agent’s actions toward its goals. To do this, it must make use of
causal implications;

4. Causal implications: the PMGmust use implications, defined as connections between
a datum and goals identified in the agent’s knowledge, since they constitute the essence
of meaning. Specifically, such implications must be generated by applying logical rea-
soning to causal knowledge;

5. Comply with the principles of LTE and AIKR: a PMG is subject, like any process,
to work with limited and often insufficient resources. In this sense, the PMG must deal
with the possibility of disruptions and support the efficient management of resources
by employing mechanisms such as partial implications and relevance;

6. Explainability: the PMG must be open and allow the rationale behind the results
produced to be traced, both for reasons of review and identification of problems within
the process itself and for ethical considerations for its practical applicability.

4.4.2 Definition

The design requirements set forth in the previous section provide the starting point for the
following formulation of the meaning generation process. Meaning generation is a dynamic
process that creates knowledge of a particular functional kind, namely the kind that can be
used to achieve goals in a particular situation given a datum. We define the meaning gener-
ation process as the recursive application of a function that computes relevant implications
from a datum, a context, and the agent’s goals by identifying them in the agent’s knowledge
base. With each invocation of the function, the process produces a set of partial implications
that are the input to the next application of the function. The construction of the partial
implications is guided by a relevance mechanism that reduces the scope of the search by
discriminating the most relevant models in the agent’s knowledge base and brings the agent
closer to the goal states. By providing an explicit representation of the computedmeaning, the
process lends itself to interventions for validation and control and revision of its correctness.

Definition 4.4.1 (Meaning generation). Given a datum d and an agent A with knowledge
K , a set of goalsG = fg0; g1; � � � ; gng, and the perceived context PC , the process of meaning
generation (PMG) is defined as the recursive application of a function that computes the set
of relevant implications RI linking d to one or more elements of G isolating the most rele-
vant causal connections that can be found in the pair (K;PC), of the form d

RI(K;PC)
������! G,

optionally starting from or integrating a set of partial implications, represented

MG0(d;A0(K;G;PC); RI0 = ;) = Rel(I(d; PC;A(K;G)))

MGt(d;At(K;G;PC); RIt�1) = Rel(It(d; PC;A(K;G)) [ It(RI� ; PC;A(K;G)))

where � < t and Rel is the function that, for each implication Im produced by I , computes
its relevance RI(Im).

The generation of meaning is therefore the recursive application of a function that com-
putes implications starting from available knowledge or previously generated implications.
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This meaning generation process can be executed with respect to any perceived datum or
element present in the agent’s knowledge. The process is executed according to the ways
defined by the agent’s internal mechanisms and, once started, is assumed to continue run-
ning and producing partial implications until one of the following conditions occurs: (a) the
resources available to the PMG are exhausted, or the process is stopped for resource-saving
reasons, (b) the PMG identifies a sufficient number of relevant implications such that the
agent temporarily suspends the process to avoid wasting resources, or (c) the PMG identifies
the optimal implications (those that are minimal in some sense, presumably based on an in-
ternal metric that optimizes for e.g., the number of models traversed, variables controlled, or
resources/time spent) present in the agent’s knowledge and is paused until models are added
or discarded. In general, it is assumed that the meaning generation process is always active,
in the perspective of online lifelong learning, except in cases of resource limitation where the
agent can discretionally terminate one or more processes altogether (e.g., if it starts a prede-
fined routine to cope with a the specific need). The result of the meaning generation process
is a set of relevant implications that represent the meaning.

The role of hypotheses What if there are nomodels in the agent’s knowledge that connect
back to the goals? This is not an obvious question, as an agent involved in the performance
of a task is expected to spend almost the entirety of the time it takes to complete that task in a
state in which no causal connections to the task goals are present in its knowledge, assuming
that, once in possession of a solution, the task is completed instantaneously. For this reason, a
meaning generation process should be coupled with a hypothesis generation process, which,
starting from the agent’s interactions with the task-environment, identifies possible variables
of interest and generates a representation of them. For optimal performance, the two pro-
cesses should work in parallel. Hypothesis generation mechanisms are outside the scope of
this thesis and, therefore, will not be discussed.

4.5 Meaning generation under LTE

Having introduced the LTE assumption and having clarified that all tasks (at least those worth
doing) require a certain amount of energy and time to accomplish, we reformulate our previ-
ous definitions of implications, implication relevance, and meaning generation to include pre-
cise temporal references to make clear the sequence of computation steps.

Definition 4.5.1 (Implication under LTE). Given a context C at a specific moment in time
t, the implications I of a perceived datum dt computed by an agent A are the elements of a
subset of reasoning chains, namely deductions, inductions, abductions, and analogiesRt+z =
Det[Int[Abt[Ant, over the knowledgeKt ofA and thePCt perceived context by the agent.
A single implication is a chain of causal relations cr 2 Kt+x linked together by deduction,
induction, and analogy starting from dt and ending with an explicit goal gi 2 Gt+x, and by
abduction starting from an explicit goal gi and ending with dt, represented

R� (d� ; PC� ;KA; GA) = De� (d� ; PC� ;KA; GA) [ In� (d� ; PC� ;KA; GA)

[ Ab� (d� ; PC� ;KA; GA) [ An� (d� ; PC� ;KA; GA)

It+z(dt; Ct; A(Kt+x; Gt+x)) = Rt+x(dt; Pt;KA;t+x; GA;t+x)

t+ z because computation in the physical world takes time. The computation of implica-
tions begins y time steps after recalling or perceiving d and requires additional x time steps
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to complete, therefore z = x+ y. We explicitly refer to a subset and not the complete set of
reasoning chains because of time and energy constraints (not enough time to compute nor
enough memory to store all possible implications). It might also be possible for the set to be
empty I = ;, if the agent does not have enough time or resources to compute implications or
if no implication can be derived from a given combination of input values.
Similarly, we can rewrite the definitions of relevant implications and of the process ofmean-

ing generation8.

Definition 4.5.2 (Relevance of an implication under LTE). Given an implication Im
linking a datum to an explicit goal, we define the relevance RIt+z of the implication as
its raw relevance RRt+y(Im) weighted by the hierarchical importance GIm of the goal it
references, divided by the length len(Im) times the total number of variables contained in
the modelsmi 2MIm = HeadIm [BodyIm [ TailIm:

len(Im) = jBodyImj+ 2

num_var(m) = jVmj

RRt+y(Im) =
X
i

Relt+xi(mi; Ti; �i) for mi 2Mt;Im

RIt+z(Im) =
RR(Im)t+y �GIm

len(Im)�
P

i num_var(mi)
for mi 2MIm

where Vm is the set of variables appearing in a modelm.

xi is the amount of time required to compute the relevance of a model mi, y =
P

i(xi),
z = y + f where f is the amount of time required to execute the computation of RI only.

Definition 4.5.3 (Meaning generation process under LTE). Given a datum d and an agent
A with knowledge K , a set of goals G = fg0; g1; � � � ; gng, and the perceived context PC ,
the process of meaning generation (PMG) is defined as the recursive application of a function
that computes the set of relevant implications RI linking d to one or more elements of G
isolating the most relevant causal connections that can be found in the pair (K;PC), of the
form d

RI(K;PC)
������! G, optionally starting from or integrating a set of partial implications,

represented

MG0(d;A0(K;G;PC); RI0 = ;) = Rel(I(d; PC;A(K;G)))

MGt+z(d;At(K;G;PC); RIt�1) = Relt+y(It+x(d; PC;A(K;G)) [ It+w(RIt�1))

where t+ z > t+ y > max(t+ x; t+ w) because computation requires time in the real
world. After computing the two sets of (possibly partial) implications, the function used to
compute the relevant implications requires additional time to complete and return its results.
In this case we are not interested in defining passage of time in the base case, as it follows
logically from the recursive application of the functionMG.

We conclude this chapter by introducing some results of our definitions of meaning and
meaning generation and hinting at future work. In particular, we explore the consequences
of our theory on the degree meaning an agent may possess and the relationship between
meaning and understanding.

8We also do not include partial implication formulas in this dissection because the definition of partial impli-
cation is equivalent to the definition of implication. The definition of relevance on partial implications is omitted
for brevity
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4.6 Degrees of meaning

In light of the definitions of meaning and meaning generation formalized here, we can define
more precisely under what conditions meaning is being generated. A consequence of this
clarification is the possibility of indicating which types of agents are capable of generating
meaning andwhich are not – andwhichmechanismswould enable them to generatemeaning.
Building on the definitions and insights already discussed at length, we can isolate four pil-

lars onwhichmeaning rests: a datum, one ormore goals, a situation (context), and knowledge.
When even just one of these elements is missing, because, for example, it is not handled by
the controller or not taken into account by the designer, we can expect limitations to emerge
in the ability to handle meaning. Let us analyze each of these four aspects in more detail.

Datum By “datum” we denote one of the subjects of meaning, which we might call active,
since it is the one to which the meaning is presumed to refer. In the absence of a datum, the
origin of any meaning cannot be found. The datum is, yes, understood as a representation in
the agent’s knowledge, but it is also the reference to the object closest to the agent that can be
leveraged to achieve the goals. That is, the difference between datum and any other piece of
knowledge held by the agent is that the datum is, at the time the meaning generation process
is initiated, the item that is intended to be used in some way to achieve goals. This could be
because, for example, the datum represents a physical object that can be materially used to
perform actions, but this is not necessarily always the case. Since the datum is missing, the
first step for initiating the goal-setting process is also missing, and, consequently, meaning
cannot be generated.

Goals We have previously introduced a characterization of goals in order to refer to them
more precisely. We have already talked about desirable and avoidable states, and mentioned
how active and inactive goals can influence the process of generating relevant implications.
But now we are particularly interested in the distinction between implicit and explicit goals.
Implicit goals are so defined because they are not explicitly represented in the knowledge
of the agent, who, for this reason, cannot inspect and reason about them to improve his or
her performance in carrying out the task. Lacking the explicit representation of goals, the
meaning generation process (as defined in this paper) simply cannot be applied9. Therefore,
systems such as Braitenberg vehicles, whose behavior is hardwired, do not compute meaning.
This category also includes reactive systems, which do not make decisions according to the
input they receive, but, whatever the input, a standard action programmed into the system
is executed. But there is more: explicit goal representation allows for choices to be made
with respect to the goal itself. Conversely, it could be said that there is no reason to endow
an agent with an explicit goal representation if it cannot choose to (re)act in different ways.
A rolling rock does not generate meaning, since it has neither an explicit goal representation
nor the ability to act, as a result of a “reasoned choice”, to change its behavior, but is subject
simply to the physical laws of the world in which it is embedded. In conclusion, another
possible discriminator for meaning production is the possibility for agents to choose to act
with respect to a goal.

Context Context is a set of information derived from the task-environment in which the
agent is situated, including the constraints defined by the environment and the current state

9When we talk about representation, we do not necessarily refer to symbolic type representation. Therefore,
a subsymbolic-type representation could equally enable the generation of meaning
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of the environment. Without context, meaning cannot exist. This idea is further supported by
the fact that other views of meaning (such as, for example, the semantics of languages – nat-
ural or programming languages) equally situate meaning in a context. A datum, if abstracted
from context –whether physical or virtual, cannot be related to anything, not even goals. This
is because the goals themselves are grounded in the task-environment, and, in the absence of
manipulable variables to manipulate and observable variables to observe, the variables that
would define the goal state are also missing. Talking about the meaning of something re-
quires therefore the explication of context (this could have further repercussions on the role
of meaning in communication).

Knowledge Finally, we come to knowledge. Knowledge is the set of actionable informa-
tion, i.e., bi-directional causal models, to which the agent has access. Knowledge is pseudo-
axiomatic, that is, it constitutes a basis of “truth” on which the agent bases its actions, in the
awareness that it may be incorrect and subject to revision. The complete absence of knowl-
edge implies an inability to perform actions. Lack of causal knowledge leaves the agent with
only the information about the correlation of two events, which, as expressed in Section 2.2.4,
may not be sufficient to complete a task. In the case of meaning, the observable correlation
would be that between the datum and one of the goals: observing the presence of the da-
tum and the goal at the same time would mean that the datum has some meaning, otherwise
nothing could be said. Therefore, since our definition of meaning refers to causal knowledge,
agents without causal knowledge will be somewhat limited in the production of meaning.

4.7 Meaning and understanding

We introduced earlier the definition of understanding as a multidimensional gradient that
depends on completeness and accuracy of the set of elements related to a phenomenon �
represented by a set of models M that constitute knowledge K of an agent A. Specifically,
we said that the understanding of � increases as agent A’s ability to predict, reach goals,
explain and recreate the phenomenon in question increases.
Meaning and understanding are intuitively closely related. In the common usage of these

concepts, it is not strange to speak of “understanding the meaning” of something. Here we in-
tend to focus on the relationship between meaning and understanding from both Thórisson’s
definition of understanding and the definitions of meaning and meaning generation given in
this thesis.

4.7.1 Meaning to understanding

We can draw initial parallels between these two concepts from the definition of meaning
used in this work. Meaning is described here as the set of information that defines the agent’s
(the subject possessing that information) state of achieving certain goals. It is immediately
apparent to us from this definition that meaning requires a set of descriptions for the possible
achievement of goals. In this sense, the models related to meaning, which we might even
refer to as “models of the connections between models” (possible alternative definition of
implications), links meaning to the goal achievement dimension of understanding.
The process of constructing implications also employs reasoning to generate new hypothe-

ses through deductive, inductive, abductive, and analogy reasoning. These hypotheses are
based on the knowledge possessed by the agent, and their quality depends on the agent’s
mechanisms that implement the reasoning. In this sense, the creation of new causal models
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that could link to the agent’s goals is a form of relevance-driven prediction making (gen-
eration of models that are assumed to be likely to be relevant to the achievement of the
goals). Meaning then also appears to be potentially related to the predictive dimension of
understanding. Similarly, the use of causal models supports the aspect of explanation present
in understanding, as the meaning generation process applies abduction mechanisms on the
agent’s knowledge. In addition, because meaning is related to the level of detail, these recon-
structions can cover both compound models taken as a whole and broken down into their
individual component models.
Finally, the re-creation of a phenomenon is related, according to the definition of under-

standing used, to the production of models that exhibit the necessary and sufficient features
of the phenomenon. The meaning-generating process defined here does not directly address
this dimension of understanding, however, the production of multiple implications linking a
datum to the same goal enables another process that, taking as input that set of implications
and their relevance values, can attempt to discern the necessary and sufficient causes for the
achievement of that goal.
In summary, the causal models produced as a result of the meaning generation mechanism

can almost always also be directly used by an understanding evaluation process due to their
properties of causality and connection through abduction with both goal and other models.
We can thus see meaning generation as a process that guides the development of understand-
ing relative to a phenomenon (such as the “datum” at the center of meaning generation or
the agent’s goals). In this sense, the better the meaning generation process, the better the
models produced (“better” in the sense of reliability and relevance) and the greater the con-
nections identified, and, therefore, the greater the understanding shown by the agent of a
given phenomenon. Conversely, in the absence of a good meaning production process the
understanding may be constrained.

4.7.2 Understanding to meaning

Conversely, we can treat meaning as a phenomenon subject to understanding. Viewed from
this perspective, the understanding of meaning spans the four dimensions already illustrated:
prediction, goal achievement, explanation, and re-creation. From our definition of meaning
we know that meaning does not exist ‘in a vacuum’ (to use Thórisson’s words), but is always
defined for a datum and in relation to a context and to an agent’s knowledge and goals. We
also defined a process for meaning generation that brings all these concepts together. Since
the phenomenon of meaning rests on many aspects, to “understand the meaning” (of some-
thing) necessarily requires understanding datum, knowledge, goals, context, and process of
generation. The analysis of this verse is more convoluted than the previous one and is, there-
fore, deferred to future work.
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Conclusion

In this chapter we conclude the thesis by summarizing the main results of our work, outlining
some ideas for future work and pointing out open issues.
The work in this thesis is motivated by the need to dissect the concept of meaning in sys-

tems operating in complex environments such as the physical world. With a view to making
an appreciable contribution to constructivist research, a careful review of major previous
related works was conducted, attempting to reconnect them neatly with the results of this
research. An “empirical” method was then applied for the elicitation of features of meaning
from the common usage of the concept. Once the characterization of the concept of meaning
was defined, a theory for the process of meaning generation implementable by an agent was
discussed. Such a theory takes and expands on the concepts of “implications” and “relevance”,
discussed in earlier constructivist work, and combines them into a meaning generation pro-
cess described in sufficient detail to be implemented in an intelligent system. Finally, connec-
tions of the concept of meaning with other concepts related to constructivist research were
explored in order to provide valuable insights for future work.

5.1 Testing

The particular formulation of the notion of meaning and the meaning generation process de-
scribed in this thesis can easily find application in the implementation of artificial intelligence
systems. This represents a significant opportunity to test the validity of the theories set forth
here. In particular, the implementation of the tests can be done through employment of the
constructivist Task Theory already introduced. Thanks to the extended causal diagram nota-
tion – in which manipulatable, observable and goal variables are present – and the notion of
intricacy, it is possible to produce the precised description of task-environments including a
measure of their “complexity”. A task-environment described in this way can then be submit-
ted to an intelligent agent to perform a series of tests. In particular, it is possible to compare
the performance of the same agent on that task-environment in cases where the agent has
equipped a meaning-generation mechanism and those where it does not. In addition, multiple
implementations of the meaning-generation mechanism can be tested to evaluate alternatives
and improvements.
Thereafter, one could proceed with the creation of increasingly sophisticated task environ-
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ments to see whether the application of a meaning-generation mechanism to an intelligent
agent significantly affects the agent’s performance in the tasks. The goal would be to un-
derstand whether, as task complexity increases, meaning generation provides an increasingly
significant advantage in performing the task. Potential candidate artificial intelligence sys-
tems for implementing this mechanism are the Non-Axiomatic Reasoning System (NARS)
and Autocatalytic Endogenous Reflective Architecture (AERA), both AGI-aspiring systems,
Should the use of meaning generation mechanisms prove to be significantly useful in the
performance of tasks, it would be appropriate to compare systems that implement meaning
generation with other control systems such as reinforcement learners on the same tasks.
Finally, it would be particularly interesting to evaluate the transfer learning capability of

an agent equipped with meaning generation by having the same agent perform two similar
tasks (i.e., sharing a number of variables and the causal relationships between them) and see
if, by retaining the models generated by the meaning generation process while performing
the first task, it is able to effectively reuse them in the second task. In particular, in the case of
NARS and AERA, it would be interesting to evaluate the results against the transfer learning
capability already present in their respective implementations.

5.2 Future work and open issues

In this section we outline possible directions for future work on a theory of meaning and some
open issues that have yet to be addressed. As hinted at in Section 4.3.3, one of the possible
directions of this work could be to explore the concept of reliability of an implication. In
addition, it would be interesting to further explore the analysis begun in Section 4.7 on the
relationship between meaning and understanding. Belowwe provide other insights for future
work.

5.2.1 Attention and planning

A transversal resource management process is necessary for any system that must operate in
physical environments, since the world is much more complex and wide-ranging than what
the system’s resources allow it to explore at any given time. It is critical to select what to
devote time to and invest resources in. We call this mechanism attention (Thórisson, 2022f).
In applying the concept of relevance to the search for implications that lead to goals, the
similarity with techniques of informed search and pruning on graphs has been invoked. As a
technique for narrowing the scope of search, the application of relevance to both individual
models and the model search function effectively acts as a mechanism to contain resource
use. Further research efforts in methodologies could then be devoted to making this agent
knowledge search process even more efficient, so that only patterns that are relevant in a
given situation are selected and retained.
A process of meaning generation could also support planning activities. Planning is the

set of operations involved in examining alternative ways of proceeding, based on predictions
about future events and the assessed quality of the solutions provided so far, at any point
in time. Attention and planning are related in the sense that good plans are also not using
more resources than are strictly necessary. Our process for generating meaning can produce
multiple viable alternatives for achieving goals from the knowledge possessed. Associating
implications with relevance provides information about the expected utility of each implica-
tion. By describing in more detail how cost information (in terms of energy and time) can be
incorporated into the models generated by the process, planning that takes into account the
reasoned use of resources could be further supported.
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5.2.2 Symbols and communication

One of the possible future developments is the comparison of the theories of meaning and
meaning generation set forth in this thesis with theories of communication and symbol mean-
ing. In particular, it would be interesting to review the previous work on meaning in com-
munication between two subjects whose purpose is to share the same concept and assess the
feasibility of offering new insights. Work in this area could focus on understanding when
meaning is the same for two agents and how meaning can be exchanged and negotiated.
One type of datum whose meaning we often want to evaluate are symbols. Symbols are a

static entity, so they do not contain meaning per se, but it is generated and assigned to them.
Of particular interest are symbols used in natural language representation (text). Understand-
ing themeaning of wordswould go a longway toward understanding themeaning of concepts
expressed using those words. The disciplines of natural language processing (NLP) and nat-
ural language understanding (NLU), which nowadays are widely studied, are also interested
in this topic. The newer approaches based on Large Language Models that achieve state-of-
the-art performance in many language-related tasks operate as “black-boxes”, as they are not
designed to support explainability processes. In contrast, a model-based meaning genera-
tion mechanism constitutes a “white-box”, human readable approach. Our theory of meaning
applied to reflective controllers capable of hypothesis-making could lead to overcoming the
limitations of previous model-based approaches to meaning, while retaining the white-box
approach that is sought.
Linked to both symbols and communication, it would be very interesting to study how an

agent can understand the meaning another agent gives to a given sentence, as this mechanism
would enable the development of agents that acquire task goals from natural language.

5.2.3 Education

Our theory of meaning built on the foundations of task theory can also be related back to
teaching and training. Teaching is one of the fundamental aspects of education, the me-
thodical activity designed to improve a learner’s performance in carrying out a task. The
Pedagogical Pentagon defined by Thórisson, Bieger, and B. R. Steunebrink (2017) is a con-
ceptual framework for addressing the five pillars of education: learning, teaching, training,
environments, and testing. To teach is to provide directions for carrying out tasks, so it is nec-
essary for learners to have a process for acquiring meaning, that is, tracing vague instructions
back to better defined goal states, and then identifying connections with their own abilities
and evaluating their development by testing themselves with the task. The training phase of
learning involves performing repeated actions over time with the goal of becoming better at
some task, while at the same time trying to avoid learning the wrong skills and to avoid for-
getting or unlearning desirable skills (Thórisson, 2022g). Since teaching and training are both
devoted to conveying notions or developing skills that are useful goal achievement, it would
be helpful to have a definition of utility to apply to the knowledge to be taught or trained on.
The concept of relevance paired with the features of a good meaning generation process can
provide a basis from which to define a metric of empiric usefulness to be associated with the
notions to be taught.

5.2.4 Open issues

The process of meaning generation can consume considerable agent resources, both in terms
of time and computational load, and in terms of memory. Although a single implication can
be implemented as a list of pointers to existing models, in cases where the goal states are far
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removed from the actual circumstances (e.g., if they are formed by variables unknown to the
agent) and the mechanisms governing the task are particularly complex, the chains of partial
implications could extend indefinitely in a continuous trial-and-error path pointing towards
the goal states. The relevance mechanism currently considered is based on probabilistic es-
timates of the relevance of acquired models as a function of the utility of individual models
assessed according to frequentist metrics. This mechanism, coupled with abductive reason-
ing for the definition of subgoals, should theoretically allow the least useful models to be
progressively eliminated and gradually move closer to the solution, but further investigation
would need to be conducted on deadlock and starvation situations of the system, in which
the resources available to the agent are consumed in a vain attempt to reach the goal. For
example, further investigation would need to be conducted into what would happen if, after
eliminating a model from the system because it was deemed ineffective, it was re-learned due
to conditions that are repeated cyclically over time at unidentified intervals. If this were to
happen, the system’s resources could be consumed trying to use the ineffective model again
to achieve the goals.

5.3 Final remarks

New perspectives emerge from the outcome of this work on the production of meaning in
autonomous grounded systems. The progressive process of defining the concept of meaning
has established a solid foundation on which to base a future theory of meaning. New insights
into the concepts of implication and relevance, and the proposal of their use in a meaning
generation process, will hopefully lead to a more complete definition of the meaning gener-
ation process. The hope is that this work will contribute to the establishment of the notion
of meaning as a practical phenomenon, for if a theory of pragmatic meaning applied to com-
munication were derived, the implications would be of great relevance to the construction of
more general AI systems.
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