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Abstract: Engineering design is a problem-solving process that works from a high-level description of a problem or
plan and proceeds to iteratively define an increasingly detailed solution aimed to meet the criteria required for
physical implementation. While significant efforts have been made to automate lower- and mid-level design tasks,
much less work has been done on the automation of high-level conceptual design. In the pursuit of novel solutions,
reliable engineering design must inevitably proceed through an iterative analysis-refinement process. To be effective
and efficient for novel and reasonably complex design tasks, spanning several levels of detail, these iterations cannot
be done through a random search, as it would be much too slow for practical use. Instead, it must be guided by
knowledge, where each iteration proceeds through verifiable arguments about why the current solution is an
improvement over what came before; a process which requires reasoning across multiple modalities and levels of
detail. Addressing the full scope of potential solutions, the types of reasoning required for producing an acceptable
solution cannot be prescribed or be known beforehand, any more than the solution itself. Verifiable arguments, in turn,
must be based on good models of cause-effect relations. In other words, high-level design must rely on ampliative
reasoning over knowledge of cause-effect relations. Unlike some low-level design, many contemporary methods in
artificial intelligence therefore fall short for reliable automation of high-level design tasks. We present arguments for
these conclusions, explore the nature of the high-level design process, and discuss frameworks for automating it.
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1 Introduction
Every design starts with a problem to be solved. This often comes in the form of some design task with a given set of
constraints that a designer seeks to satisfy. The design process thus consists in progressing from that initial specification
to an acceptable solution. Since even redesign involves modifying or extending existing solutions, design tasks always
involve some level of novelty. Here, we are most interested in the end of the spectrum containing greater novelty.
Working from this position, engineering design can be seen to consist of two qualitatively distinct design regimes that
we can refer to as high-level (HL) and low-level (LL) design (Schaff, 2024). LL design is simpler (though by no means
simple) and defined as the specification of the concrete geometry and interaction of parts, while HL design is more
abstract, defined as the conceptual problem solving process leading a designer incrementally from a problem description
to increasingly better intermediate solutions (a ‘better’ solution includes more detail and is closer to a complete
specification). For example, an HL design of a briefcase might discover a solution with a handle and a lockable
container. From here, the LL design can determine how exactly the handle should be shaped, how big the container
should be, and how it is all expected to be manufactured. One difference between these two stages consists of the size of
the solution space being addressed: LL part design starts with numerous constraints all at the same level of detail while
HL conceptual design starts with abstract problem descriptions with specifications at varying levels of detail and a
non-finite (or near infinite) number of possible solutions. LL design calls for knowledge and expertise in particular
domains such as materials, electronics, machinery, etc.; HL design relies additionally on more general knowledge
(subsuming to some extent lower levels).

Here we focus on HL engineering design in domains calling for reliability, safety and transparency, like air traffic
control, medical device design, and safety-critical infrastructure, where reliability can be backed up with arguments and
valid explanations for why the solutions should be trusted. Systems that can do so automatically, over knowledge they
have learned autonomously, are few and far between; here we look briefly at two such systems, the Autocatalytic
Endogenous Reflective Architecture (AERA; Nivel et al. 2012) and Non-Axiomatic Reasoning System (NARS; Wang,
2006).

The value of developing a system capable of reliable, well-argued autonomous conceptual engineering design (ACED) is
similar to the value of any kind of trustworthy automation; whether to improve safety, increase speed, reduce cost or
risk, the outcome can typically be translated directly to monetary value. A computer system capable of a variety of
ACED tasks could presumably increase the output of existing engineering teams substantially. Such a system could even
be made to produce solutions too complex or involved for a conventional human-centric design process. ACED agents
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could even have the ability to take on design processes largely on their own, acting with a high degree of agency. In
order to fully take advantage of this capability, however, the system must be trustworthy. Human engineers must be able
to inspect its reasoning, evaluate its proposed solutions, and validate its work. This requires explanation and a certain
amount of reasoning ability.

Considering the potential advantages of the technology, substantial investigation has already gone into the process of
autonomous and automated engineering design (Venkataraman & Chakrabarti, 2010, Bhatt et al., 2021, Kügler et al.,
2023). Attempts have been made to formalize the design process and represent it in terms of activities, design outcomes,
and the parameters that lead to a strong design. Additionally, there is already an extensive body of work in low- and
mid-level design automation in terms of generative design1 (GD) and knowledge-based engineering (KBE; Kügler et al.,
2023), respectively. While powerful, these methods are not compatible with the nature of the larger HL design space,
which requires a more high-level exploratory approach. Finally, work in task theory (Belenchia et al., 2021) can aid in
the formal representation and analysis of engineering design problems. All of this is to say that, while comparatively
little work has been focused on the creation of a true ACED-capable agent, there is a significant body of work on which
to build such research.

Given the iterative nature of the design process and its reliance on questioning select assumptions and exploring
alternatives, we posit that any ACED-capable agent must be capable of a unified abduction-deduction process.
Encapsulating this process is the concept of ampliative reasoning, which combines (non-axiomatic, defeasible)
deduction, abduction, induction and analogy (cf. Sheikhlar et al. 2021).2 This is to say that an agent capable of
ampliative design can build models from observation, update and correct them over time, use them to explain
phenomena, use them to plan actions, and compare them to other similar models, in an effort to iteratively improve its
design solution. All of these capabilities would enable a design agent to fully understand a problem, work problems at
multiple levels of detail, and do all of this with transparent reasoning that could be explained to or inspected by human
engineers.

In this paper we detail how an ACED must be based on ampliative reasoning, combining causal knowledge and
argumentation to reason about the problem at hand, at multiple levels of detail, based on verifiable and explainable
arguments for its design choices, and discuss cognitive architectures that support such an approach.

2 Related Work
Great many attempts have been made to systematize and automate engineering design. In the GEMS model
(Venkataraman & Chakrabarti, 2010), design is considered as a series of the discrete activities: generate, evaluate,
modify, and select; new ideas are generated, their potential evaluated, changes made in light of feedback, and the process
is repeated until a final design is selected. An alternative approach proposed by a related research team, the SAPPhIRE
model (Bhatt et al., 2021), which considers designs in terms of how design outcomes change over time, through a
progression of ideas from the high-level reasoning about function to low-level selection and design of individual parts.
This latter approach is particularly powerful when the domain is well-known, as the agent can work its way through
existing knowledge from a desired function to the processes that perform that function and then on to the physical
affectations and implementation of the function into a part. The challenge with this approach is that an engineer must
also be able to work with uncertainty, which is not addressed directly in these approaches.

Generative design (GD) is the practice of using optimization processes such as genetic algorithms to explore a solution
space and solve a low-level (LL) design problem for a particular set of constraints, loads, and other features. It is now a
well-developed technology and is even available to the general public. GD excels in creating optimized and unique
designs for parts even when the conditions are particularly challenging or novel. However, it can only work at this
lowest level of detail; GD is based on the direct manipulation of geometry and a larger-scale or higher-level design
problem would result in a significant expansion in search space, not to mention the difficulty of developing an
optimization process capable of this greater challenge. One possible solution is knowledge-based engineering (KBE),
which encodes the knowledge of human engineers into conceptual frameworks that can speed the mid-level design
process and increase the extent to which institutional knowledge is preserved and reused (Kügler et al., 2023). These
systems can function much like templates for complex processes in which a specific set of design specifications is
entered at the beginning and a finished design is returned at the end. This makes them quite suitable for mass customized
products; KBE systems are even beginning to be offered to the general public.3 The difficulty with KBE systems is that

3 See e.g. ParaPy—Knowledge-Based Engineering Platform [WWW Document]. https://parapy.nl/ – accessed Oct. 25, 2023.

2 Note that this differs from the definition that some authors use, wherein ‘ampliative reasoning’ refers to methods relying on
abduction and induction in some combination (cf. Psillos, 2011).

1 See e.g. Autodesk, 2023: What is Generative Design | Tools | Software; https://www.autodesk.com/solutions/generative-design –
accessed Oct. 4, 2023.

NordDesign 2024



their knowledge is static as most of them involve no learning; they are intended to be highly reliable so they are built and
tested by hand.

Smithers (1992) suggests that design is not just a simple search process but an active effort to explore and experiment
with possible solutions. It is rare that a problem is perfectly described at the outset of a design exercise and so, as a
solution is sought, an engineer should expect to discover imperfections in the problem description. They should be able
to work to resolve these imperfections either by communicating with their client and changing their design or by finding
a solution on their own. Then, there is the question of the exact way in which designs are simplified and guided through
the conceptual stage. Schut (2010) takes the approach of removing degrees of freedom to keep the solution space
minimal, while Axiomatic Design (Nordlund et al., 2015) tries to minimize information content by enforcing modularity
and controlling dependencies in the problem description itself. The difficulty is in implanting this into a software agent
as this will require systems with the agency to learn on their own, experiment with solutions, and update their knowledge
as best practices change. Even Axiomatic Design’s translation of customer needs to functional requirements involves
some level of understanding of the problem itself; it simply cannot be done with low-level optimization processes that
work below this level. Perhaps a hybrid KBE and GD agent could do this by reasoning through a solution and then
dispatching a generative designer to finish part designs. This, however, will still require a powerful cognitive
architecture to support the integration of these two approaches and to provide the learning capabilities desired for an
ACED agent.

Finally, the issue of problem analysis has been subjected to some scrutiny in work on task theory (Thórisson et al.,
2016a), a budding field aimed at creating a theoretical basis for intelligent task execution at a fundamental level.
Task-theoretic methods represent tasks as networks of causal-relational models (CRMs) that can be used to describe
knowledge of them (cf. Belenchia et al., 2021; Eberding et al., 2021). By chaining such models forward (deduction) and
backward (abduction), an agent can explain its conceptualization of phenomena and develop plans for achieving goals.
One of the many interesting features of task theory is how a task’s level of detail is captured, as changes in the level of
detail can significantly change the task itself (Belenchia et al., 2021:25). In this view, tasks can be constructed as a
hierarchy with respect to an agent’s goals. Breaking tasks down and analyzing them this way makes solution generation
significantly more straightforward. This more rigorous approach also lends itself well to the development of an ACED
agent. Below we show how these ideas can be brought to bear on the problem.

3 The Engineering Design Process: Novelty & Iteration
Most design tasks are vague and significantly under-constrained and most design tasks in the physical world involve
several levels of detail. As soon as a solution for a particular design problem exists, there is no need for engineering
design – engineering design thus always involves novelty. Smithers (1992) considers engineering design as not just a
progression towards a (new) solution but also to a complete and unambiguous problem description, proposing the idea of
an Initial Requirement Description (IRD), which “may be incomplete, inconsistent, imprecise, and ambiguous or (more
typically) some combination of all of these”; there is the potential for missing or contradictory criteria, criteria that
subsume other criteria, and so on. Reconciling these criteria is among the first steps of the design process, clearly
separating high-level (HL) and low-level (LL) design. This requires further specification and analysis which, in turn,
requires reasoning about the problem at a conceptual level. The designer must grasp the intent and prerequisites behind
each criterion and all of the relationships that might be present between the criteria. The process as described involves
doing a breadth-first exploration of the design space, calling for knowledge-based interpolation and extrapolation to fill
in missing constraints, which can only be done through (defeasible, non-axiomatic) induction (cf. Sheikhlar et al. 2021).

All tasks come with acceptable tolerances, , for the solution’s form and function. A design task4 involves producing a𝑇
solution that meets these requirements, decreasing the difference, , between the specification and the solution, as𝑥 𝛥(𝑥)
the task progresses. As the design gets closer to an acceptable finished solution ( ), the detail that is being addressed𝑆
necessarily increases;

. (1)
𝑥 𝑆
lim
→

𝛥(𝑥) ≤ 𝑇

This relationship also holds for how levels of detail (LoD) can be efficiently addressed during the design process: The
HL engineering design process involves working through problems at multiple levels of detail, drawing on knowledge
from a variety of sources, and refining solutions iteratively until a problem is declared ‘solved.’ For any reasonably
complex design task, e.g. the design of a new aircraft, such iteration could not be based on random search, as this would
extend the design time to impractical levels. When starting out a design, based on a complete specification, questions
about low-level solutions may still need to be explored. Exploring every potentially-relevant small detail for every

4 In our terminology, a design is a blueprint for a solution to a role or function; a design problem is a call for a design solution; a task
is an assigned problem that may include additional requirements (e.g. methods); a design task is thus an assigned design problem.
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high-level design option is not possible, however, due to time, space and energy constraints. So in HL design, any
finer-grain LoD that might need to be explored must be considered for being sufficiently relevant or not – going into
more details during high-level design will slow down the design process. If all details are relevant, the high-level design
cannot proceed until all questions about the details have been answered; in this case the time for completing the
coarse-grain design is equal to completing the whole design including every detail (a worst-case scenario with respect to
design cost). Of course, deciding which levels of detail matter during the initial design space exploration, and should be
investigated more deeply, must depend on verifiable arguments, which in turn must rely on valid cause-effect relations.
So random exploration is clearly also not an option for an effective iterative design process. (A worst-case thought
experiment makes this clear. Imagine employing random search to design an airliner: With a volume of 80×80×25
meters, a spatial resolution of 0.1 mm, 15 different material options for each voxel, and a generation rate of 1 billion
design variations per second, this task would take on the order of 1018,800 years, not counting the testing of the outcome).

This introduces an additional challenge in HL design, in that HL models of the world must be based on observations of
LL processes. Forming and using these models requires an agent to move between different levels of detail; deciding
whether some design option is more worthy of exploration than another must involve, at the very least, abduction, which
is to say, arguments for what could be prerequisites for particular design outcomes. But most of the time it would also
involve deductions, especially when investigating implications of specific design choices, e.g. the value of some
important variable, like the size of an automobile’s gas tank or the wingspan of an airplane. The net outcome of this is
that unified and iterated deduction–abduction cannot be avoided for HL design. This holds whether the reasoning is done
to produce arguments for a particular path or to prepare for doing an actual experiment in the world, to test a specific
assumption which would then be integrated back into the HL plan.

Proposing (and separating) solutions that may work, over myriads of possible designs that don’t work, is an important
part of high-level design space exploration. In highly non-linear design domains such as the physical world, minute
variations in any proposed solution may instantly reduce it to a non-solution. The only practical way to consistently and
reliably evaluate alternatives in such domains is through reasoning over alternatives in light of known cause-effect
relationships (Thórisson & Talbot, 2018; Pearl, 2009; Halpern & Pearl, 2005) between the nature of the problem and the
targeted solution’s purpose, design constraints, and context. Human designers use their knowledge of how the world
works, coupled with argumentation, to reason through alternatives and rule out bad ideas, paths, and options. Doing so at
a high-level of design (coarse-grained level of detail) up front can shave off enormous amounts of unnecessary design
time. But to do so, they must be grounded (i.e. the knowledge must model the target phenomena’s useful cause-effect
relations; cf. Belenchia et al. 2021; Eberding 2021).

An important part of this process is the decomposition of large problems into sub-problems. Returning to the briefcase
example from the introduction, it is not enough to know that the solution needs a locked container on a handle: we also
need to know how big the container is, what the handle should be made of, whether there are any aesthetic preferences,
and so on. Exploring these sub-problems requires either a pre-existing knowledge of the problems at hand or the ability
to make analogies with similar problems whose solutions are known. In the analogy sense, we can see how a design
agent could see similarities between its current problem and solutions to problems it has worked in the past. For
instance, a designer might have prior experience with briefcases and know that they often contain paper somewhere
around the A4 and Letter sizes. They could then adapt this solution to the current problem through modification, to
speed up the process (cf. Sheikhlar et al. 2022). Without the ability to compare and contrast knowledge, our designer
might have had to solve the problem from scratch, losing valuable time and resources. Analogy is also important for
supporting generalization (cf. Sheikhlar et al. 2021).

Taken together, the above argues for abduction and deduction when considering which levels of detail must be explored
further during HL design, analogy for repurposing and reuse of knowledge, and induction for creating rules of thumb
and generalizing. The order of these, however, will be difficult to systematize, as the web of dependencies between the
sub-components of the potential solution and the order in which it is being explored may steer the design process in
various directions. The order of applying different kinds of reasoning to answer the questions as they arise must be
flexible. Like a human designer, an ACED agent will thus need to be able to take a hybrid approach by using prior
knowledge and a variety of reasoning methods to guide its solution creation, and even be able to fall back to blind
experimentation when informed methods fail completely (cf. Thórisson 2020). The picture that emerges is clearly one of
an ACED agent capable of ampliative reasoning.

In summary, engineering design is a process highly dependent on the agent’s ability to conceptualize the problem and the
solution. They must be able to analyze the problem requirements and understand how they relate to the context of the
problem. They must be able to propose and evaluate different solutions and explain the reasoning for their decisions.
Finally, they must be able to bridge gaps in their understanding by developing context-dependent rules of thumb from
their observations of the world. All of this must be done at the conceptual level and must be represented with causal
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reasoning, there is simply no way to perform this kind of conceptual problem-solving without ampliative reasoning and
understanding.

4 Explanation is Integral to Engineering Design
From the above analysis it becomes clear that explanation must play a role in the choices that an engineering design
agent performs. In the history of AI, the concept of ‘explanation’ was for the longest time merely a footnote. It has
recently increased in importance and is now considered by many a central concept in the pursuit of general intelligence
(cf. Thórisson et al., 2023; Thórisson & Minsky, 2022). This heightened focus is primarily linked to the contemporary
surge in the use of AI systems designed for the automation of diverse industrial functions (cf. Weimer, 2016), involving
a variety of applications such as insurance risk assessment, industrial inspection, job hiring, language translation and
visually-guided control of automobiles. With features unmatched by other technologies, artificial neural networks
(ANNs) have emerged as a pivotal technology for these purposes. With appropriate training, ANNs can seemingly turn
extensive datasets into useful knowledge through a comprehensive network of classification functions (Wang & Li,
2016). Their use for practical situations, where plenty of data is already available, makes their deployment in many cases
far less costly than other alternative approaches including manual coding.

However, the motivation for pursuing explanations in large ANN systems does not arise primarily from a specific desire
for explanation capabilities; instead, it originates from the ANNs’ inherent opacity and the requirement that automation
be trustworthy (cf. Wing, 2021). Trustworthy automation requires, among other things, that a system’s operation be
explainable, especially in light of errors. Like any human-made technology, ANNs are not infallible. However,
elucidating with precision and coherence, at varying levels of detail and abstraction, the process by which any deployed
ANN produces its output, has proven to be a formidable challenge. This difficulty may, to a considerable extent, be
attributed to the technology’s inability to represent causal relations explicitly. The task of explaining their operation
cannot be relegated to the ANN systems themselves because they do not have the capacity to reliably reflect on their
own operation, which stems from their inability to (a) learn as they go and (b) represent cause-effect relations. Presently,
these systems are not suitably positioned for routine explanations in practical contexts. For any safety-critical
engineering design, and in fact most designs in human society, no obvious solution is in sight for putting ANN-based
technologies at the center of such operations.

A sound explanation effectively addresses blind spots, provides clarity, and highlights previously obscure elements.
Crucially, a good explanation adheres to implicit (or explicit) constraints, avoiding any breach of relevant rules. Mere
reference to correlational data is insufficient for achieving this; the foundation must instead rest on authentic and
relevant causal relations (Thórisson et al. 2023). A sound explanation’s essence lies in illuminating or highlighting why a
given phenomenon – whether it involves a sequence of events, a particular situation, or any other outcome – takes a
specific form, rather than an alternative one (Pearl, 2009; Halpern & Pearl, 2005).

Thórisson et al. (2023) characterize explanation as a goal-driven process and argue that the quality of an explanation
generation mechanism is based on how well it fulfills three purposes – or goals: uncovering unknown or hidden patterns,
highlighting or identifying relevant causal chains, and identifying incorrect background assumptions. At the heart of any
good explanation lies knowledge of cause-effect relations. Halpern and Pearl (2005:851) state: “…the role of
explanation is to provide the information needed to establish causation. Thus, as we said in the introduction, what counts
as an explanation depends on what one already knows.” The process of engineering design involves what Thórisson et
al. call ‘self-explanation,’ that is, the repeated explanation generation to oneself for the purpose of uncovering
inconsistencies in one’s own knowledge.

For reasons involving safety, efficiency, and trustworthiness, we argue that explanation is critical in systems performing
HL design tasks. Existing architectures such as ANNs are powerful but their opacity makes it difficult to fully trust —
and therefore utilize — them in a design workflow. The solution to this is a system not just capable of explanation but
based on it. A cognitive architecture capable of self-explanation would be a strong foundation on which to build an
ACED-capable agent.

5 Cognitive Architectures for the Engineering Method
As we have detailed above, any engineering design process will inevitably involve iterative refinement of requirements
to an increasingly smaller set of options, specifications, choices, and solutions. An autonomous conceptual design agent
(ACED) should be able to refine its understanding5of a problem as it works on it, striving to develop increasingly better
– and unified – models of the subject matter and the context in which a solution shall operate. Since the agent will be
performing thought experiments as well as physical experiments on the world (especially where knowledge and

5 We follow the definition of ‘understanding’ provided by Thórisson et al. (Thórisson 2016b; Bieger & Thórisson, 2017), which
proposes an information theory of the process of understanding compatible with the concept of ‘sense-making’ (Klein et al. 2007).
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imagination falls short) and weaving this into a cohesive solution, we can liken this to a process of ‘argument-sustained
exploration.’ Since information is very often missing in the early stages of engineering design, any practical machine
capable of autonomous high-level (HL) design must be able to learn as it goes (cf. Thórisson et al., 2019) – it cannot
assume, for every novel design it undertakes, that it already knows what is necessary for an acceptable solution. We
should also remind ourselves that most if not all design is novel, at least to the designer, as otherwise it would not
require a new design.

With this in mind, the limitations in one potential methodology that is often mentioned in the context of design, artificial
neural networks (ANNs). While ANNs are a powerful technology for solving many well-defined problems for which
plenty of data is already available, they do not permit the kind of reasoning with causality and iterative reflection that is
needed for developing the increasingly better understanding of a problem required in the engineering design process
(Arkoudas, 2023). These shortcomings have been to some extent addressed in KBE systems (Kügler et al., 2023), and
while they represent an improvement in reasoning capacity over ANNs, a KBE-based approach will likely not be able to
experiment and develop its knowledge of the world over time, and will not learn. They will also not be well-suited to
generate verifiable explanations for their design choices. Thus, neither neural nor purely knowledge-based architectures
are well-suited to address (novel) design problems that require safety-critical circumstances.

Any artificial agent capable of engineering design must be able to transform functional requirements into parts, explore
in less-than-perfectly understood environments, and take the agency to keep solutions simple and abstract for efficiency.
This is what the general intelligence of human design engineers achieves, and while no generally intelligent systems
have been created to date, some implemented cognitive architectures currently under development show promise in this
regard. The NARS6 architecture, for instance, has been demonstrated to find design solutions to simple challenges, such
as refashioning a toothbrush into the shape of a screwdriver when faced with the task of loosening a screw without
having a screwdriver7. The system builds on non-axiomatic reasoning, which assumes that any statement learned about
the world is defeasible (Pollock, 2010), when conflicting evidence arises.

Another system that could be considered to address the requirements of reliable automation of high-level engineering
design is the Autocatalytic Endogenous Reflective Architecture8 (AERA; Nivel et al., 2013; Thórisson 2020). Developed
through a methodology that has embraced the requirements of exploration and self-reflection, the Constructivist AI
(Thórisson, 2012), an AERA agent, instead of being limited to its initial knowledge or the knowledge provided by its
creators at ‘birth,’ can autonomously grow its knowledge from a small initial seed, and thus be well-suited to an
environment of exploration and learning (Thórisson 2020).

In terms of engineering methodologies that may be tested in AERA, of particular interest is the approach taken by Žavbi
& Duhovnik (2000), who propose that solving engineering problems involves chaining together equations of physical
phenomena to describe a device’s transformations of energy and forces. Their approach has been successfully used to
reinvent, at a conceptual level, devices as complex as microphones. While they do not propose how such a system could
automatically create these equations from its experience and observations of the world, this is solved in the AERA
system, which can learn about tasks cumulatively, representing knowledge in terms of causal-relational models (CRMs;
Thórisson & Talbot, 2018). CRMs are simple enough that they can be created and updated autonomously by the system
itself; they can be chained together to generate explanations of observed phenomena, produce plans to achieve goals, and
generate predictions in real time. The challenge of automating engineering design could possibly be addressed by
including a CRM-based approach to problem description and using AERA or NARS to implement the high-level
reasoning at the core of the process. Indeed, this has been the subject of a recent MSc thesis by one of the authors of this
paper (Schaff, 2024).

In order to achieve a system capable of ACED, we need a new cognitive architecture capable of learning, based on
ampliative reasoning over cause-effect knowledge. NARS and AERA show how this may be quite possible and feasible,
presenting research platforms and open-source software for future development. Due to these systems’ autonomous
cumulative learning and built-in ampliative reasoning, they are among the very few implemented cognitive architectures
to be suited for research in reliable high-level design automation.

6 Conclusions & Future Work
Due to the nature of high-level design tasks, agents capable of autonomous conceptual engineering design (ACED) will
likely not resemble those that have been developed for low- and mid-level tasks. An artificial system capable of
conceptual engineering design, to be fully autonomous, must have abilities to reason about problem requirements,
explore novel solution spaces, iterate over the problem and solution, work across differing levels of detail, reuse parts of

8 Autocatalytic Endogenous Reflective Architecture (cf. Nivel et al., 2013); see http://www.openaera.org – accessed Feb. 13, 2024.
7 Available at https://github.com/opennars/OpenNARS-for-Applications/blob/master/examples/nal/toothbrush.nal
6 Non-Axiomatic Reasoning System; http://www.opennars.org (cf. Wang, 2006) – accessed Feb. 13, 2024.
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existing solutions to speed the design process, and explain their reasoning to human engineers. To date, no technical
solution exists that can address this other than non-axiomatic defeasible ampliative reasoning. Existing systems using
genetic algorithms, artificial neural networks, and knowledge-based architectures, while useful for many things, are
unable to operate at the level of conceptual reasoning demonstrated by humans. For this reason we suggest that future
research into high-level conceptual design automation focus on neuro-symbolic (cf. Latapie, 2022) or neo-symbolic
foundations such as demonstrated in AERA (Nivel et al. 2013) and NARS (Wang, 2006). The work presented tells us
that the process of engineering design is very close to the heart of general intelligence. While work on creating machines
with general intelligence is a formidable undertaking, an autonomous conceptual engineering design agent might,
however, be somewhat closer at hand if we build on already existing research aiming for this goal.
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