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Abstract. Among the benefits of agent-based modeling is parallel devel-
opment and implementation of components. Integrating large numbers of
agents developed by many is, however, a significant challenge. Further,
architectural changes can require significant redesign. We have devel-
oped CDM-S, the Constructionist Design Methodology for Simulation, an
agent-oriented methodology for developing, implementing and evolving
multi-agent systems. CDM-S’s strength lies in simplifying modeling and
construction of systems with architectural evolution of complex control
hierarchies and data flow. We have applied CDM-S in the development
of a family of market simulations where companies, employees, banks
and consumers are modeled at multiple abstraction levels. These were
designed and built by 14 students over a period of 10 weeks. Experience
shows CDM-S to be a promising high-level methodology for constructing
large multi-agent systems. Here we describe CDM-S and present data on
its application in the development process.
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1 Introduction

The creation of multi-scale agent-based simulation systems requires integration
of a large number of functionalities that must be carefully coordinated to achieve
coherent and desired runtime behavior. Typically this work is done according to
standard software practices. Development of multi-agent systems is more difficult
using these methodologies than standard IT system construction as the charac-
teristics and requirements of these systems are drastically different in many key
aspects. Agent-based systems are often built by numerous people over long pe-
riods, months, years, sometimes even decades, evolving in the process. Few -
if any - methodologies have addressed the many issues that complicate such
work. Additionally, agent-based systems often assume or require concurrency
throughout.
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We have adopted a methodology that was designed for artificial intelligence,
the Constructionist Design Methodology (CDM) [1], to address the special issues
encountered in agent-based simulation systems. The result, Constructionist De-
sign Methodology for Simulation (CDM-S), has been used in the development of
a family of agent-based simulation models. The methodology bears some relation
to [2] and [3], although ours has the benefit of having been tested and honed in a
broader range of projects [4,5,6]. The models built so far with CDM-S are fairly
large, composed of many types of agents, each implementing multiple decision-
making policies; the running simulations created to date count up to 100 agents
for a single system. These provide a non-trivial test-case for the methodology.

In this paper we present CDM-S and its use in the construction of a family of
simulation systems. First we give an overview of the methodology and present
the resulting simulation framework at a relatively high level. Then we describe
the application of CDM-S to the development process, presenting information
on development process and detail selected parts of the process and draw con-
clusions from the data.

2 CDM-S: Constructionist Design Methodology for
Simulation

The original CDM has 9 defined steps; CDM-S simplifies many of these and
adapts to simulations. It also adds three new additional steps - 7, 11, 12. Step
7 is one of the keys to successful adaptation of CDM to simulation. The full set
of steps of CDM-S is:

1. Define high-level goals. Specify the primary motivation and goals behind the
system to be developed.

2. Define the scope of the system. Specify at a high level what the simulation
is intended to do. Ask yourself What is the set of questions that my system
supposed to answer? - this is the most important question you will ever ask,
when building a simulation! Then follow up with these four questions: {a}
What is the data? {b} Where is the data? {c} How is it shared? {d} How
is it processed/ changed? Use of narratives and story lines are encouraged,
as a template of expected behavior of the simulation. Start with an initial
write-up of a few high-level examples of system behavior. From this, a more
detailed specification of the abilities of the system to answer questions can
be built, using information from step 1. This will guide the selection of which
agents to include and what their roles should be. It may be useful to think
also in this step how the system may be expected to be modified and evolve.

3. Modularization. Define the functional areas that the system must serve, and
divide this into agents with roughly defined roles. The agents can then be
recursively sub-divided using the same approach (principle of divisible mod-
ularity). This step is best done in a group meeting where all developers
can contribute to the effort. Agents communicate via a pub-sub mechanism
and/or blackboard(s). Try to match information exchange (messages) in your
model with information exchange in the system(s) to be modeled.
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(a) Agents. This step operationalizes the role of each agent and defines their
interfaces. Agents with highly different functional roles should typically
not need access to the same set of data - if they do it means they may
have close functional dependencies; consider coupling them or putting
them into the same executable with shared access to the same data.
Define descriptive names for message types and draw flow charts of agent
communication.

(b) Blackboards. Blackboards serve both as engineering support and system
optimization. Consider using two or more blackboards if {a} there is a
wide range of information types in the total set of messages in the system
that form natural data groups (e.g. co-existing complex symbolic plan
structures versus simple boolean switches) {b} there is a wide range
of real-time requirements for the information flow, e.g. high-frequency
micro-decisions versus low-frequency plan announcements; {c} the sys-
tem needs to run on multiple computers to achieve acceptable perfor-
mance. It is natural that agents with messages containing similar content
share a blackboard.

(c) Unit tests. Design simple case scenarios that return known results and
span short periods of run-time. They are typically run for sub-parts
of the system but can also be used to track behavior holistically. Define
information snapshots to be published for statistical and monitoring pur-
poses; use monitoring agents to test for ”normal” and ”obvious” behavior
of the system.

4. Test system against scenarios.
(a) Expected communication (blackboard) throughput. Network speed and

computing power puts natural constraints on the maximum through-
put of each blackboard. Make sure the architecture and the hardware
setup meets performance expectations.

(b) Efficient information flow. Static or semi-static information that is fre-
quently needed in more than one place in the system may be a hint that
the processes using that information should share an executable. (This
is not a good idea when the processes sharing the information are of very
different nature.)

(c) Convenience with regard to programming languages and executables. If
two agents are written in the same language it may be convenient to
put them together into one executable. This is especially sensible if {a}
the agents use the same set of data, {b} are serially dependent on each
other, {c} have similar update frequency requirements, {d} need to be
tightly synchronized, or {e} are part of the same conceptual system.

5. Iterate through 1-4 as often as necessary.
6. Assign agent types to team members. The natural way to assign responsibili-

ties is along the lines of the agents, following people’s strengths and primary
interest areas. Every agent type gets one Lead that is responsible for that
agent working, for defining the messages it post and receives. A good way to
assign tasks, especially if the number of team members is small, is to borrow
from extreme programming and assign them to pairs: One Lead, chosen for
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their primary strength, and one Support, chosen by their interest and/or
secondary strength. One individual can serve both roles, in different teams.

7. Write agent ”shells” in a breadth-first approach. Partial agents are used
to achieve a good overview of message flow and interdependencies in the
system: Start with mock-ups, before creating full system that do very little
but enough to start running the system in a few limited example scenarios.
Use case scenarios from step 2 to help implement mock-ups.

8. Test all agents in cooperation. Use the unit tests to verify sub-assemblies.
This step always takes longer than expected! It is also one of the most
overlooked steps, yet it cannot be avoided - doing so will only force it to
happen later in the process, delaying the ability to accurately estimate the
project’s full scope, and making it more likely that deadlines are missed and
planned functionality has to be canceled.

9. Build agents to specification. Build all agents to their next function specifi-
cation. This step is naturally done in frequent alteration with the prior step.
Write agents with resilience (graceful degradation): A distributed system can
be very fragile; write agents to be resistant to downtime. Give agents tem-
poral knowledge: If agents are unaware of the passing of time they are less
likely to represent the behavior of the system they are supposed to simulate.
Use the benefits of being able to freely mutate agents (split and merge) as
the design and implementation process unravels.

10. Tune the system with all agents (and agent shells) operating. This step can
be arbitrarily long, depending on the complexity of the interaction between
agents and the complexity of the message content being transmitted between
them. Computational intensity of some agents may require them to be put
on separate computers.

11. Return to 7 until all agents have reached full specification.
12. Expand / evolve the system. Continue to add agents to the system, as well as

modifying existing agents necessary, going back to step 2 or even 1, running
through to 11, until the system is abandoned.

3 Application of CDM-S

We will now describe the application of these design principles to the develop-
ment of a family of agent-based simulation models meant to study the gener-
ation, organization, development and evolution of the knowledge embedded in
an industry. The original plan was to create models of knowledge evolution in a
market economy that would go beyond the current state of the art in terms of
detail and predictive power. While we have not yet fully achieved this goal we
have made significant headway towards a model with endogenous support for
knowledge evolution.

The software we chose for constructing our models is JavaTM and Psyclone [7];
portability factored heavily in the choice of both. Python scripts were used for
turnkey setup, making it easy for team members to start the simulation using
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a single command. Like related middleware such as Swarm1, Psyclone supports
architectural re-configuration very well. In Psyclone an implemented architecture
can be radically changed with relative ease as to re-routing messages, temporal
dependencies, and re-organizing distribution of agents across machines. Semantic
interfaces used for specifying data flow provide great flexibility in changing layout
after the initial system is built [5]. All parameters in our models allow centralized
access, allowing for many variations to be made for comparative runs of models.

3.1 System Modeling

The market economy models consist of agents at multiple levels of abstraction,
i.e. individual, firms and other organization, and industry: Multiple types of
agents with a number of decision-making policies (for a detailed account see [4]).
In most cases the policies are relatively simple; in every case we tried to mirror
their natural counterpart to a first approximation. The individuals represent the
agent type that is least abstract, in that a single Individual agent corresponds
to a single individual in the real world; the Market agent is the most abstract, in
that a single Market agent represents thousands of consuming agents in the real
world. The firms lie there in between, being partly represented by individuals
(the employees) and partly by monolithic rule sets that determine their policies.

The work proceeded in two phases, roughly 5 weeks in duration each. Each
phase involved a group of Master’s students in the course Agent-Based Model-
ing and Simulation, who had not used CDM-S or similar methodology before. A
total of 14 Master’s students worked in parallel on building separate parts of the
system. We will focus in particular on the market mechanism in this model, as it
had to be re-engineered from Phase 1 to Phase 2, and provides for an interesting
case study; the time spent by the teams working on version 1 and 2 are provided
and compared. The first phase was implemented by a group of 11 Master’s stu-
dents, the second by a group of 3 Master’s students and one undergraduate. In
Phase 1 the students started from scratch and used CDM; in Phase 2 they started
from the platform designed and implemented by the first group and used CDM-
S, which had been revised from among other things lessons learned from Phase
1 (see Figure 1). Both teams were led by the same two instructors.

So, our models include agents at multiple levels of abstraction, i.e. individual,
firms and other organization, and market. Similarly, our model can represent
how resource constraints, such as the lack of talented individuals or the lack of
funding, influence the knowledge buildup in an industry and eventual knowledge
substitution. To give the readers a sense of the complexity involved in the models,
a short overview of the framework is in order. Further details are given in [4].

Individuals. The first source of complexity stems from our new morphogenetic2

model of knowledge with highly dynamic properties. Individuals are atomic

1 http://www.swarm.org/wiki/
2 Morphogen: An agent that controls the growth and shape of something, e.g. biological

tissue.
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Fig. 1. Agents implemented in Phase 1 are shown on the left and modifications and
refactoring in Phase 2 is shown on the right

agents in the system, containing mechanisms for knowledge acquisition, reten-
tion and application, salary negotiation and employment search. They can be
initialized to have different knowledge (Ks) in the beginning of a simulation. A
learning rate describes how quickly/slowly they learn (acquire new Ks). They
can learn new Ks by going to special training at the University and their perfor-
mance on a particular K improves over time as they use it to produce products
that require that K. Individuals evaluate their salaries in connection with the
rest of the world (average salaries, employment ads) and decide if they think
they are more valuable than their salaries state, using a heuristic comparing
their own salary with that of the market for each K.

Companies / Firms. Individuals are employed by firms that offer services
on the market, based on the knowledge endowments of their employees. Firms
compete with other firms on the product/service markets, as well as in factor
markets (employees and funding). Decision-making in the firm is based on local
policies, including a training policy, an alertness policy and development policy.
A firm can add products to its suite of products, but must invest both time and
staff on product development before it can start selling.

University. The University controls general knowledge development within all
knowledge fields, i.e. the state-of-the-art. It also controls the availability of new
knowledge fields, i.e. new inventions. In the University each K has an associated
”difficulty” rate that determines how intrinsically complex that knowledge is.
This interacts with the learning rate of Individuals, which varies. The University
holds lmax for all Ks at any point in time.

Job Center. A single agent called Job Center manages all hiring of employ-
ees. Companies advertise for individuals with specific levels of Ks. Unemployed
individuals can answer these advertisements and the Job Center finds the most
suitable employee through a method that takes into account the salary demands
of the individuals. The Job Center also posts statistics such as average salaries.

Bank. The Bank is a simple loaning institution that the companies can apply
for a loan from. All companies start with some amount of cash - they will apply
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for loans if they run out of cash. The bank advertises its current interest rates
every day, so the firm can evaluate whether it is favorable or not to take a loan.
Global rates change every day and vary from 4% to 20%. As most of the other
agents the bank publishes information about its capital and liquid resources.

Market. The market is composed of target groups; each group is initialized with
a particular set of values determining its behavior with regard to the products
offered by the firms. The market includes various shifting policies and can be set
to gradually change its size or shift its product sweet spot. At runtime, customer
groups receive product advertisements from companies and make a decision of
how much they will buy, according to how well the product meets their needs
and the price of the product.

4 Results

Our implemented model in Phase 1 contained 40 Individuals, 5 Firms, a Market,
a University, a Job Center and a Bank. This turned out to be impossible to run
on a single computer, even our fastest one, so we distributed the system onto 12
computers. This, however, turned out to create bottlenecks in the networking.
We used CDM-S steps 3a and 3b repeatedly on the design and worked out a
new scheme for combining information flow between companies and individuals
into fewer messages, achieving a significant reduction in message traffic. The
resulting model ran fairly well on 12 computers.

One of the main lessons learned in Phase 1 was that integrating the agents
together in the integration session took more time than expected; frequently
going back to fix agent behavior as a result of integration problems. One reasons
was in many cases that the values in the messages that were being sent between
the agents were not in the same scale. That affected the execution of the system
as many wrong decisions were taken by the agents. This shows the importance of
having a runnable version of the system with agent shells as early as possible in
the design phase and frequently running the whole system together and observing
its behavior.

The initial mechanism for the market turned out to be too simplified for
the purposes of our simulation and did not ensure realistic distribution of sales
between competing firms. To improve on the design one team in Phase 2 focused
exclusively on re-engineering the way this mechanism worked, as well as making
it more sophisticated. With the introduction of the auctioneer, target groups
no longer listened to product advertisements from the firms and decided for
themselves what to buy (see Figure 1). Following CDM-S’s step 7, agent shells
were created early on eliminating integration problems in Phase 2.

To guaranty upward scaling of target groups a new server architecture was
introduced in Phase 2. Instead of each target group being an individual exe-
cutable, a target group server is created that has many target group instances.
In the new design the target group server oversaw interrupts and sending and
receiving of messages on behalf of the target groups. This reduces the amount
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of messages that have to be transmitted and decreases the load on the network.
The amount of time spent by both market teams is shown in Table 1.

The mutability of our framework makes it possible to build several models
with different assumptions and test the outcomes against each other. It also
allows us to maintain easy control of all parameters that we are interested in
exploring, even at runtime. As suggested by CDM-S, explicit representation of
agent interaction through messages, which can be inspected both on paper and
at run-time, increased the system’s transparency, and helped all team members’
understanding of how the various parts of the system work. Typically, in a system
with the number and complexity of interactions between agents as found here,
one would expect a significant amount of time spent in Phase 2 on reworking
the interactions and interconnections between the agents, rather than the agent
mechanisms themselves or other parts of the system. However, the results show
that most of the time is actually spent on the agents themselves, and then on
running the resulting system. This indicates to us that at least one of our goals
was achieved through the use of CDM-S: To help balance the time spent on
those aspects that typically fall by the wayside, such as running the system
under various conditions; CDM-S helped us manage complexity related to the
network of agent interactions and allowed us to focus on agent functionality
(see Table 1).

Thórisson et al. [1] had reported a total estimated development time of 2 mind-
months for a fairly complex interactive multimedia system, which they claimed
strongly supported the conclusion that the Constructionist Methodology sped up
system creation. Our results here also support this conclusion, but perhaps not
quite as strongly. We have reason to believe that the time spent on the relatively
complex model, and the results achieved, indicate that CDM-S is a promising
design methodology worthy of further study and refinement. However, until other
design methodologies provide comparable evaluations, we will not know how

Table 1. Total hours spent by two 3-person sub-teams. In Phase 1 the market and
related functions were implemented and in Phase 2 the market was revised with added
functionality and robustness. Implementing mock-ups of agent interactions beforehand
in Phase 2 contributes directly to valuable time getting devoted to running and tweak-
ing the model (44%).

Phase 1 Phase 2
TASK Hours % Hours %
Defining message types 8 4% 7 3%
Design / redesign 15 8% 14 7%
Market agent 90 51% 49 25%
Auctioneer agent 29 15%
Bank agent 22 12% 3 1%
Monitor 14 8% 10 5%
Runs and data gathering 30 17% 87 44%
TOTAL 179 100% 199 100%
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much or how little the CDM-S increases productivity in the creation of complex
dynamic systems, over and above alternative approaches.

4.1 Design Process and Teamwork

The iterative steps in CDM-S support teamwork and work distribution in a large
group of developers, by among other things facilitating parallel development of
agents. This was especially evident in Phase 1, where 11 students were working
on the system simultaneously. The breadth-first approach emphasized in step 7
is another key to time-saving. It insures that communication between agents or
sub-assemblies work before the details of each agent is implemented, allowing for
a runnable version of the full system to be available from early in the implemen-
tation time. This also greatly minimized integration problems as the mock-ups
serve as test interfaces for other’s team’s unit tests.

The agent development was part of the class homework so teams were working
independently hours on their agents; integration sessions were held every other
week. Starting from system goals originally provided by the teams’ leaders, ar-
chitectures were quickly built, requiring only minor adjustments throughout the
project. Our original design from Phase 1 proved solid and stayed relatively un-
changed, though minor adjustments to single classes where needed. The bank
agent had to be redesigned once; thanks to CDM-S this could be done with only
minor changes to the surrounding architectural components.

The communication between groups throughout the project was good. Sev-
eral meetings where held when critical decisions concerning whole of the system
needed to be made. The students agreed that the election of a leader for each
group proved to be an excellent decision that sped up development processes
considerably, although all major decisions where posed to the whole group. In-
ternal communication between group members in our groups was good. The use
of CDM-S turned out to be highly beneficial with the relatively large team of
developers working in parallel; the agents/messages dual view it provided on the
system enabled the collaborating groups to communicate efficiently about inter-
actions between the system’s agents, as well as the layout of the architecture, in
part and in full.

5 Conclusions

We have presented results from the application of the Constructionist Design
Methodology for Simulation, CDM-S, to the creation of a complex, multi-scale
model of a knowledge and market economy. The whole project had architectural
challenges that were all solved through the use of our CDM-S methodology,
which resulted in a system with a high degree of extensibility. The relatively
high simulation resolution the models provide is a direct result of using CDM-S.
The current distribution of agents in the model along an axis of abstractness
can be fairly easily changed through the mutability functionality of the CDM-
S. Coupled with the model’s scalability we envision being able to for example
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substitute the Market with several more fine-grain agents that approximate a
large group of consumers more closely.

The family of models developed has a clear potential to address several classes
of questions regarding the generation, organization and evolution of knowledge
in economic settings. The methodology had a large impact on the success of the
work. In addition to providing a robust approach to multi-agent systems, the
hope is that this work can also lead to more detailed comparisons and evaluations
of alternative approaches for building such systems.
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1. Thórisson, K.R., Benko, H., Arnold, A., Abramov, D., Maskey, S., Vaseekaran,
A.: Constructionist design methodology for interactive intelligences. A.I. Maga-
zine 25(4), 77–90 (2004)

2. Giret, A.: A multi agent methodology for holonic manufacturing systems. In:
Dignum, F., Dignum, V., Koenig, S., Kraus, S., Singh, M.P., Wooldridge, M. (eds.)
AAMAS, Utrect, Netherlands, July 2005, p. 1375 (2005)

3. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems:
The gaia methodology. ACM Transactions on Software Engineering and Methodol-
ogy (TOSEM) 12(3), 317–370 (2003)
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Kristjansson, G., Sigmundarson, S.: Modular simulation of knowledge development
in industry: A multi-level framework. In: Proc. of the First Intl. Conf. on Economic
Science with Heterogeneous Interacting Agents, Bologna, Italy (June 2006)
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